论文标题
时间序列极端的转换线性模型
Transformed-Linear Models for Time Series Extremes
论文作者
论文摘要
为了捕获时间序列的上尾部的依赖性,我们开发了非负定期变化的时间序列模型,这些模型的构建与经典的非激发ARMA模型相似。我们没有完全表征时间序列的尾巴依赖性,而是定义了弱尾部平稳性的概念,这使我们能够通过尾部成对依赖函数(TPDF)描述定期变化的时间序列,该时间序列是对成对极端依赖性的量度。我们陈述了定期变化时间序列的元素的有限维集合中的一致性要求,并表明TPDF的值不取决于所考虑的维度。因此,我们的模型采用非负值,我们使用转换的线性操作。我们显示了这些模型的存在和平稳性,并开发了它们的属性,例如模型TPDF。此外,我们显示了转换的线性MA($ \ infty $)型号的类别形成了内部产品空间。通过调查有利于野火传播的条件的动机,我们将模型拟合到小时的风速数据,发现拟合的转换线性模型比传统的ARMA模型或经典线性变化的模型比传统的ARMA模型产生更好的上尾量估计值。
In order to capture the dependence in the upper tail of a time series, we develop non-negative regularly-varying time series models that are constructed similarly to classical non-extreme ARMA models. Rather than fully characterizing tail dependence of the time series, we define the concept of weak tail stationarity which allows us to describe a regularly-varying time series through the tail pairwise dependence function (TPDF) which is a measure of pairwise extremal dependencies. We state consistency requirements among the finite-dimensional collections of the elements of a regularly-varying time series and show that the TPDF's value does not depend on the dimension being considered. So that our models take nonnegative values, we use transformed-linear operations. We show existence and stationarity of these models, and develop their properties such as the model TPDF's. Additionally, we show the class of transformed-linear MA($\infty$) models forms an inner product space. Motivated by investigating conditions conducive to the spread of wildfires, we fit models to hourly windspeed data and find that the fitted transformed-linear models produce better estimates of upper tail quantities than traditional ARMA models or than classical linear regularly varying models.