论文标题
使用Deep AutoCododer神经网络将敏感的财务会计数据泄漏到敏感的财务会计数据
Leaking Sensitive Financial Accounting Data in Plain Sight using Deep Autoencoder Neural Networks
论文作者
论文摘要
如今,组织在“企业资源计划”(ERP)系统中收集大量敏感信息,例如会计相关交易,客户主数据或战略销售价格信息。此类信息的泄漏对公司构成了严重的威胁,因为事件的数量以及对遇到这些事件的人的声誉损害继续增加。同时,深度学习研究中的发现表明,机器学习模型可能会被恶意滥用以创建新的攻击媒介。了解此类攻击的性质对于(内部)审计和欺诈检查实践变得越来越重要。这种意识的创造尤其是使用基于深度学习的隐志技术的欺诈数据泄漏,这些技术可能仍未被最先进的“计算机辅助审计技术”(CAATS)泄露。在这项工作中,我们引入了一个现实世界中的“威胁模型”,旨在泄漏敏感的会计数据。此外,我们表明,可以训练由三个神经网络构成的深层隐志过程,以将这些数据隐藏在不引人注目的“日常”图像中。最后,我们在两个公开可用的现实付款数据集上提供定性和定量评估。
Nowadays, organizations collect vast quantities of sensitive information in `Enterprise Resource Planning' (ERP) systems, such as accounting relevant transactions, customer master data, or strategic sales price information. The leakage of such information poses a severe threat for companies as the number of incidents and the reputational damage to those experiencing them continue to increase. At the same time, discoveries in deep learning research revealed that machine learning models could be maliciously misused to create new attack vectors. Understanding the nature of such attacks becomes increasingly important for the (internal) audit and fraud examination practice. The creation of such an awareness holds in particular for the fraudulent data leakage using deep learning-based steganographic techniques that might remain undetected by state-of-the-art `Computer Assisted Audit Techniques' (CAATs). In this work, we introduce a real-world `threat model' designed to leak sensitive accounting data. In addition, we show that a deep steganographic process, constituted by three neural networks, can be trained to hide such data in unobtrusive `day-to-day' images. Finally, we provide qualitative and quantitative evaluations on two publicly available real-world payment datasets.