论文标题
稀疏哈密顿人的变分量子本素粒子
Variational quantum eigensolvers for sparse Hamiltonians
论文作者
论文摘要
杂化量子古典变异算法,例如变分量子本素(VQE)和量子近似优化算法(QAOA)是嘈杂的,中等规模的量子(NISQ)计算机的有希望的应用。 VQE和QAOA都在变体时都将哈密顿量的预期值极端化。迄今为止,在VQE和QAOA上的所有工作都仅限于汉密尔顿人的Pauli代表。但是,存在许多案例,其中稀疏表示哈密顿量是已知的,但没有有效的保利代表。我们将VQE扩展到一般的稀疏哈密顿人。我们将典型第二量化的哈密顿量的分解分解为多个单独的,自我内向的,遗传学的术语,该术语是在阶梯操作员的数量中线性的,在第二量化的表示中。我们将一般$ d $ -sparse哈密顿量的一般分解为$ O(d^2)$。在这两种情况下,可以使用两种ANSATZ状态制剂和最多六个Oracle查询获得任何术语的单个样本。对于基于Pauli的VQE,将期望值估算为Precision $ε$ scale所需的样本数量为$ε^{ - 2} $。这扩大了VQE对Hamiltonian和其他可观察到的系统的适用性范围,这些系统最有效地用稀疏的矩阵描述了。
Hybrid quantum-classical variational algorithms such as the variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm (QAOA) are promising applications for noisy, intermediate-scale quantum (NISQ) computers. Both VQE and QAOA variationally extremize the expectation value of a Hamiltonian. All work to date on VQE and QAOA has been limited to Pauli representations of Hamiltonians. However, many cases exist in which a sparse representation of the Hamiltonian is known but there is no efficient Pauli representation. We extend VQE to general sparse Hamiltonians. We provide a decomposition of a fermionic second-quantized Hamiltonian into a number of one-sparse, self-inverse, Hermitian terms linear in the number of ladder operator monomials in the second-quantized representation. We provide a decomposition of a general $d$-sparse Hamiltonian into $O(d^2)$ such terms. In both cases a single sample of any term can be obtained using two ansatz state preparations and at most six oracle queries. The number of samples required to estimate the expectation value to precision $ε$ scales as $ε^{-2}$ as for Pauli-based VQE. This widens the domain of applicability of VQE to systems whose Hamiltonian and other observables are most efficiently described in terms of sparse matrices.