论文标题

细致的对象细分

Meticulous Object Segmentation

论文作者

Yang, Chenglin, Wang, Yilin, Zhang, Jianming, Zhang, He, Lin, Zhe, Yuille, Alan

论文摘要

与针对低分辨率图像的常见图像分割任务相比,较高的分辨率详细图像分割的注意力较少。在本文中,我们提出并研究了一个名为“细致对象分割”(MOS)的任务,该任务的重点是在高分辨率图像(例如2K -4K)中用精细的形状分割定义明确的前景对象。为此,我们提出了细致的网络,该网络利用专用解码器捕获对象边界的详细信息。具体来说,我们设计了一个层次的炼油(HIERPR)块来更好地描述对象边界,并将解码过程重新制定为对象掩模的递归粗糙至细化的递归粗略。为了评估对象边界接近对象边界的分割质量,我们提出了考虑面罩覆盖范围和边界精度的修剪度质量(MQ)得分。此外,我们收集了一个MOS基准数据集,其中包括600个具有复杂物体的高质量图像。我们提供了全面的经验证据,表明细致网络可以揭示像素精确的分割边界,并且优于高分辨率对象细分任务的最新方法。

Compared with common image segmentation tasks targeted at low-resolution images, higher resolution detailed image segmentation receives much less attention. In this paper, we propose and study a task named Meticulous Object Segmentation (MOS), which is focused on segmenting well-defined foreground objects with elaborate shapes in high resolution images (e.g. 2k - 4k). To this end, we propose the MeticulousNet which leverages a dedicated decoder to capture the object boundary details. Specifically, we design a Hierarchical Point-wise Refining (HierPR) block to better delineate object boundaries, and reformulate the decoding process as a recursive coarse to fine refinement of the object mask. To evaluate segmentation quality near object boundaries, we propose the Meticulosity Quality (MQ) score considering both the mask coverage and boundary precision. In addition, we collect a MOS benchmark dataset including 600 high quality images with complex objects. We provide comprehensive empirical evidence showing that MeticulousNet can reveal pixel-accurate segmentation boundaries and is superior to state-of-the-art methods for high resolution object segmentation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源