论文标题
将几乎$ $ - 复杂作为沉浸曲线
Almost $ι$-complexes as immersed curves
论文作者
论文摘要
在这里,证明了新的同构$p_Ω:θ_ {\ mathbb {z}}^3 \ to \ mathbb {z} $被证明并且存在$ \ mathbb {z}^{\ s}^{\ infty} $ summand in $ the这是通过近似于同源性的3 spheres的参与式Heegaard浮子复合物,并在两次刺穿的磁盘上浸入式曲线。
Here the existence of a new homomorphism $P_ω : Θ_{\mathbb{Z}}^3 \to \mathbb{Z}$ is proven and the existence of a $\mathbb{Z}^{\infty}$ summand in $Θ_{\mathbb{Z}}^3$ is reproven. This is done by approximating the involutive Heegaard Floer complexes of homology 3-spheres with immersed curves on the twice punctured disk.