论文标题
不合适,近端和高级联合性
Amenability, proximality and higher order syndeticity
论文作者
论文摘要
我们表明,离散基团的通用最小近端流量和通用最小近端流量可以实现为群体集的较高级别概念的集团亚集的平移式布尔代数的石头空间。我们建立了这些子集的代数,组合和拓扑的动力学特征,以获得新的必要条件,以实现强大的舒适性和舒适性。我们还表征了密集的轨道集,回答了格拉斯纳,坦科夫,魏斯和扎克的问题。
We show that the universal minimimal proximal flow and the universal minimal strongly proximal flow of a discrete group can be realized as the Stone spaces of translation invariant Boolean algebras of subsets of the group satisfying a higher order notion of syndeticity. We establish algebraic, combinatorial and topological dynamical characterizations of these subsets that we use to obtain new necessary and sufficient conditions for strong amenability and amenability. We also characterize dense orbit sets, answering a question of Glasner, Tsankov, Weiss and Zucker.