论文标题

植被分类任务的三胞胎损失的一声学习

One-Shot Learning with Triplet Loss for Vegetation Classification Tasks

论文作者

Uzhinskiy, Alexander, Ososkov, Gennady, Goncharov, Pavel, Nechaevskiy, Andrey, Smetanin, Artem

论文摘要

三胞胎损失功能是可以显着提高单次学习任务准确性的选项之一。从2015年开始,许多项目都使用暹罗网络和这种损失进行面部识别和对象分类。在我们的研究中,我们专注于与植被有关的两项任务。第一个是在25种五种农作物(葡萄,棉,小麦,黄瓜和玉米)上进行植物疾病检测。这项任务是激励的,因为疾病引起的收获损失对于大型农业结构和农村家庭来说都是一个严重的问题。第二个任务是识别苔藓物种(5类)。苔藓是污染物的天然生物弥补因子。因此,它们用于环境监测程序。苔藓物种的识别是样品预处理中的重要一步。在这两个任务中,我们都使用了自收集的图像数据库。我们尝试了几种深度学习架构和方法。我们具有三重态损耗功能和MobilenetV2作为基本网络的暹罗网络体系结构在上述任务中表现出最令人印象深刻的结果。植物性疾病检测的平均准确性为苔藓物种分类超过97.8%和97.6%。

Triplet loss function is one of the options that can significantly improve the accuracy of the One-shot Learning tasks. Starting from 2015, many projects use Siamese networks and this kind of loss for face recognition and object classification. In our research, we focused on two tasks related to vegetation. The first one is plant disease detection on 25 classes of five crops (grape, cotton, wheat, cucumbers, and corn). This task is motivated because harvest losses due to diseases is a serious problem for both large farming structures and rural families. The second task is the identification of moss species (5 classes). Mosses are natural bioaccumulators of pollutants; therefore, they are used in environmental monitoring programs. The identification of moss species is an important step in the sample preprocessing. In both tasks, we used self-collected image databases. We tried several deep learning architectures and approaches. Our Siamese network architecture with a triplet loss function and MobileNetV2 as a base network showed the most impressive results in both above-mentioned tasks. The average accuracy for plant disease detection amounted to over 97.8% and 97.6% for moss species classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源