论文标题
有限及时的阿贝尔商的基数限制的亚指数绑定
A subexponential bound on the cardinality of abelian quotients in finite transitive groups
论文作者
论文摘要
我们表明,对于每个及每个及每个及其$ n \ ge 2 $的及每个及物群的$ g $ g $ g $ g $ g $,$ g $的最大的阿贝利安商最多具有$ 4^{n/\ sqrt {\ log_2 n}} $。这给了1989年的LászlóKovács和Cheryl Praeger的杰出问题。
We show that, for every transitive group $G$ of degree $n\ge 2$, the largest abelian quotient of $G$ has cardinality at most $4^{n/\sqrt{\log_2 n}}$. This gives a positive answer to a 1989 outstanding question of László Kovács and Cheryl Praeger.