论文标题
一维马赛克晶格中的拓扑超导体
Topological Superconductors in One-Dimensional Mosaic Lattices
论文作者
论文摘要
我们研究了一维(1D)马赛克晶格中的拓扑超导体,其现场电位对等距相同的位点进行了调节。当系统在拓扑上是非平凡时,Majorana零模式出现在1D晶格的两端。通过计算系统的能量光谱和拓扑不变,我们发现现场电位的镶嵌电势调节的间隔,无论是周期性,准二碘还是随机分布,都可以显着影响拓扑特性。即使是镶嵌电势的间隔,对于任何有限的现场电位,该系统将始终存在于拓扑超导阶段。当间隔是奇数时,系统会经历拓扑相变并进入微不足道的阶段,因为现场电势变得比临界值强,除了相应的晶格中的某些特殊情况。这些结论得到了证明,并通过利用传输矩阵的方法来分析确定的相边界。他们表明,在1D马赛克晶格中可能会出现稳健的零模式,而与空间调制电势的强度无关。
We study topological superconductor in one-dimensional (1D) mosaic lattice whose on-site potentials are modulated for equally spaced sites. When the system is topologically nontrivial, Majorana zero modes appear at the two ends of the 1D lattice. By calculating energy spectra and topological invariant of the system, we find the interval of the mosaic modulation of the on-site potential, whether it is periodic, quasiperiodic, or randomly distributed, can influence the topological properties significantly. For even interval of the mosaic potential, the system will always exist in the topological superconducting phase for any finite on-site potentials. When the interval is odd, the system undergoes a topological phase transition and enters into the trivial phase as the on-site potentials become stronger than a critical value, except for some special cases in the commensurate lattices. These conclusions are proven and the phase boundaries determined analytically by exploiting the method of transfer matrix. They reveal that robust Majorana zero modes can arise in 1D mosaic lattice independent of the strength of the spatially modulated potentials.