论文标题

研究$ k_l \!\ to \!在J-Parc Koto实验中π^0ν\覆盖$衰减

Study of the $K_L \!\to\! π^0 ν\overlineν$ Decay at the J-PARC KOTO Experiment

论文作者

KOTO Collaboration, Ahn, J. K., Beckford, B., Campbell, M., Chen, S. H., Comfort, J., Dona, K., Farrington, M. S., Hanai, K., Hara, N., Haraguchi, H., Hsiung, Y. B., Hutcheson, M., Inagaki, T., Isoe, M., Kamiji, I., Kato, T., Kim, E. J., Kim, J. L., Kim, H. M., Komatsubara, T. K., Kotera, K., Lee, S. K., Lee, J. W., Lim, G. Y., Lin, Q. S., Lin, C., Luo, Y., Mari, T., Masuda, T., Matsumura, T., Mcfarland, D., McNeal, N., Miyazaki, K., Murayama, R., Nakagiri, K., Nanjo, H., Nishimiya, H., Noichi, Y., Nomura, T., Nunes, T., Ohsugi, M., Okuno, H., Redeker, J. C., Sanchez, J., Sasaki, M., Sasao, N., Sato, T., Sato, K., Sato, Y., Shimizu, N., Shimogawa, T., Shinkawa, T., Shinohara, S., Shiomi, K., Shiraishi, R., Su, S., Sugiyama, Y., Suzuki, S., Tajima, Y., Taylor, M., Tecchio, M., Togawa, M., Toyoda, T., Tung, Y. -C., Vuong, Q. H., Wah, Y. W., Watanabe, H., Yamanaka, T., Yoshida, H. Y., Zaidenberg, L.

论文摘要

稀有的衰减$ k_l \!\ to \! π^0 ν\overlineν$ was studied with the dataset taken at the J-PARC KOTO experiment in 2016, 2017, and 2018. With a single event sensitivity of $( 7.20 \pm 0.05_{\rm stat} \pm 0.66_{\rm syst} ) \times 10^{-10}$, three candidate events were observed in the signal region.揭开它们后,研究了$ k^{\ pm} $的污染,并研究了零星的$ k_l $衰减,估计背景事件的总数为$ 1.22 \ pm 0.26 $。我们得出的结论是,观察到的事件的数量在统计上与背景期望一致。对于此数据集,我们将$ k_l \!\的分支分数上的上限设置为$ 4.9 \ times 10^{ - 9} $至\!在90%的置信度下,π^0ν\覆盖。

The rare decay $K_L \!\to\! π^0 ν\overlineν$ was studied with the dataset taken at the J-PARC KOTO experiment in 2016, 2017, and 2018. With a single event sensitivity of $( 7.20 \pm 0.05_{\rm stat} \pm 0.66_{\rm syst} ) \times 10^{-10}$, three candidate events were observed in the signal region. After unveiling them, contaminations from $K^{\pm}$ and scattered $K_L$ decays were studied, and the total number of background events was estimated to be $1.22 \pm 0.26$. We conclude that the number of observed events is statistically consistent with the background expectation. For this dataset, we set an upper limit of $4.9 \times 10^{-9}$ on the branching fraction of $K_L \!\to\! π^0 ν\overlineν$ at the 90% confidence level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源