论文标题

用于设计和制造的高渗透材料的机器学习和数据分析,表现出感兴趣的机械或疲劳特性

Machine Learning and Data Analytics for Design and Manufacturing of High-Entropy Materials Exhibiting Mechanical or Fatigue Properties of Interest

论文作者

Steingrimsson, Baldur, Fan, Xuesong, Kulkarni, Anand, Gao, Michael C., Liaw, Peter K.

论文摘要

本章介绍了用于应用机器学习和数据分析的创新框架,以识别具有某些期望的感兴趣属性的合金或复合材料。主要的重点是用于结构材料具有较大组成空间的合金和复合材料。此类合金或复合材料称为高渗透材料(HEMS),在这里主要是在结构应用的背景下呈现的。对于每个感兴趣的输出属性,都确定了相应的驾驶(输入)因子。这些输入因素可能包括材料组成,热处理,制造过程,微结构,温度,应变率,环境或测试模式。该框架假设选择了适合手头应用程序和可用数据的优化技术。提出了基于物理的模型,例如预测最终的拉伸强度(UTS)或疲劳性抗性。我们设计了能够考虑基于物理依赖的模型。我们将这些依赖性视为先验信息。如果将人工神经网络(ANN)视为适合手头的应用,则建议采用与基础物理相一致的自定义内核功能,以实现更紧密的耦合,更好的预测,并从最常提取 - 通常有限的有限输入数据。

This chapter presents an innovative framework for the application of machine learning and data analytics for the identification of alloys or composites exhibiting certain desired properties of interest. The main focus is on alloys and composites with large composition spaces for structural materials. Such alloys or composites are referred to as high-entropy materials (HEMs) and are here presented primarily in context of structural applications. For each output property of interest, the corresponding driving (input) factors are identified. These input factors may include the material composition, heat treatment, manufacturing process, microstructure, temperature, strain rate, environment, or testing mode. The framework assumes the selection of an optimization technique suitable for the application at hand and the data available. Physics-based models are presented, such as for predicting the ultimate tensile strength (UTS) or fatigue resistance. We devise models capable of accounting for physics-based dependencies. We factor such dependencies into the models as a priori information. In case that an artificial neural network (ANN) is deemed suitable for the applications at hand, it is suggested to employ custom kernel functions consistent with the underlying physics, for the purpose of attaining tighter coupling, better prediction, and for extracting the most out of the - usually limited - input data available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源