论文标题
光刻制造的硅沉浸光栅的精确大火角度测量
Precise Blaze Angle Measurements of Lithographically Fabricated Silicon Immersion Gratings
论文作者
论文摘要
硅浸入光栅和grisms可实现高吞吐量的紧凑,近红外光谱仪。这些仪器可以在基于地面的努力中使用,以表征恒星和系外行星的气氛,以及在空间天文台中。我们的光栅制造技术在切割前使用X射线晶体学来定位硅零件,然后进行光刻和湿化学蚀刻,以产生大火。该过程利用了(100)和(111)平面之间蚀刻速率的晶体结构和相对差异,从而使我们可以产生具有表面误差<λ/4的部分。先前的测量表明,化学蚀刻可以产生最终的蚀刻燃烧,与(111)平面的方向略有不同。在浸入光栅的情况下,机械安装座可以纠正这种差异,但是这样做可能会损害由于阴影而导致的光栅吞吐量。在灰色的情况下,如果不考虑实际的大火将降低未驱逐的射线的亮度。我们报告了多种技术,以精确衡量我们内部制造的沉浸式光栅的大火。第一种方法使用扫描电子显微镜对火焰曲线进行成像,该曲线的测量精度为0.5度。第二种方法是一种光学方法,用于使用旋转阶段测量大火面之间的角度,该旋转阶段的测量精度为0.2度。最后,我们描述了一种理论的燃烧函数建模方法,我们希望该方法产生0.1度的测量精度。通过这些方法,我们可以量化湿蚀刻产生所需的燃烧的准确性,并进一步优化光栅和grism效率。
Silicon immersion gratings and grisms enable compact, near-infrared spectrographs with high throughput. These instruments find use in ground-based efforts to characterize stellar and exoplanet atmospheres, and in space-based observatories. Our grating fabrication technique uses x-ray crystallography to orient silicon parts prior to cutting, followed by lithography and wet chemical etching to produce the blaze. This process takes advantage of the crystal structure and relative difference in etching rates between the (100) and (111) planes such that we can produce parts that have surface errors < λ/4. Previous measurements indicate that chemical etching can yield a final etched blaze that slightly differs from the orientation of the (111) plane. This difference can be corrected by the mechanical mount in the case of the immersion gratings, but doing so may compromise grating throughput due to shadowing. In the case of the grisms, failure to take the actual blaze into account will reduce the brightness of the undeviated ray. We report on multiple techniques to precisely measure the blaze of our in-house fabricated immersion gratings. The first method uses a scanning electron microscope to image the blaze profile, which yields a measurement precision of 0.5 degrees. The second method is an optical method of measuring the angle between blaze faces using a rotation stage, which yields a measurement precision of 0.2 degrees. Finally, we describe a theoretical blaze function modeling method, which we expect to yield a measurement precision of 0.1 degrees. With these methods, we can quantify the accuracy with which the wet etching produces the required blaze and further optimize grating and grism efficiencies.