论文标题
致密分子云中的化学氮分馏
Chemical nitrogen fractionation in dense molecular clouds
论文作者
论文摘要
含氮分子在不同的天文环境(例如星际介质或太阳系中)显示出可变的同位素分馏水平。星际化学模型无法诱导冷分子云中的氮馏分,因为15N的交换反应大多是效率低下的。在这里,我们开发了一种新的气体元素模型,用于氮分馏,包括对新的氮分馏反应进行彻底搜索,以及对原子耗竭对星际粉尘颗粒的现实描述。我们表明,虽然单独的分子云气相化学导致分馏非常低,但由于原子氮的质量依赖性晶粒表面粘贴速率,14N原子优先从气相耗尽了14N原子。但是,假设基本14N/15N的比率为441(等于太阳风值),我们的模型仅导致在360-400范围内预测的14N/15N比率中合成的所有含有N/15N的比率的所有含N/15N的比率的低15N富集。较高的富集水平既不能用这种机制来解释,也不能通过化学来解释两个可能的解释。 (i)Romano等人最近的工作表明,局部ISM中的基本14N/15N比例较小,由于电子重组速率恒定变化与同位素的变化,假设15NNH+和15NNH+消耗。 (ii)N2的光解离会导致弥漫性分子云中的氮分馏,其中光子起着重要作用,在富鲁亚和Aikawa的工作中,在密集的分子云形成过程中保守。
Nitrogen-bearing molecules display variable isotopic fractionation levels in different astronomical environments such as in the interstellar medium or in the Solar System. Models of interstellar chemistry are unable to induce nitrogen fraction in cold molecular clouds as exchange reactions for 15N are mostly inefficient. Here, we developed a new gas-grain model for nitrogen fractionation including a thorough search for new nitrogen fractionation reactions and a realistic description of atom depletion onto interstellar dust particles. We show that, while dense molecular cloud gas-phase chemistry alone leads to very low fractionation, 14N atoms are preferentially depleted from the gas-phase due to a mass dependent grain surface sticking rate for atomic nitrogen. However, assuming an elementary 14N/15N ratio of 441 (equal to the solar wind value), our model leads to only low 15N enrichment for all N-containing species synthesized in the gas-phase with predicted 14N/15N ratios in the range 360-400. Higher enrichment levels can neither be explained by this mechanism, nor through chemistry, with two possible explanations. (I) The elementary 14N/15N ratio in the local ISM is smaller, as suggested by the recent work of Romano et al, with an hypothetic 15NNH+ and 15NNH+ depletion due to variation of the electronic recombination rate constant variation with the isotopes. (II) N2 photodissociation leads to variable nitrogen fractionation in diffuse molecular clouds where photons play an important role, which is conserved during dense molecular cloud formation as suggested by the work of Furuya & Aikawa.