论文标题

通过使用深度学习,在大维度上求解非线性Kolmogorov方程:离散方案的数值比较

Solving non-linear Kolmogorov equations in large dimensions by using deep learning: a numerical comparison of discretization schemes

论文作者

Macris, Nicolas, Marino, Raffaele

论文摘要

非线性部分差分差异方程成功地用于描述自然科学,工程甚至财务中的广泛依赖性现象。例如,在物理系统中,Allen-Cahn方程描述了与相变相关的模式形成。相反,在金融中,黑色 - choles方程描述了衍生投资工具价格的演变。这种现代应用通常需要在经典方法无效的高维度中求解这些方程。最近,E,Han和Jentzen [1] [2]引入了一种有趣的新方法。主要思想是构建一个深层网络,该网络是根据科尔莫戈罗夫方程的离散随机微分方程样本进行训练的。该网络至少能够在数值上近似,在整个空间域中具有多项式复杂性的Kolmogorov方程的解。 在此贡献中,我们通过使用随机微分方程的不同离散方案来研究深网的变体。我们在基准的示例上比较了相关网络的性能,并表明,对于某些离散方案,可以提高准确性,而不会影响观察到的计算复杂性。

Non-linear partial differential Kolmogorov equations are successfully used to describe a wide range of time dependent phenomena, in natural sciences, engineering or even finance. For example, in physical systems, the Allen-Cahn equation describes pattern formation associated to phase transitions. In finance, instead, the Black-Scholes equation describes the evolution of the price of derivative investment instruments. Such modern applications often require to solve these equations in high-dimensional regimes in which classical approaches are ineffective. Recently, an interesting new approach based on deep learning has been introduced by E, Han, and Jentzen [1][2]. The main idea is to construct a deep network which is trained from the samples of discrete stochastic differential equations underlying Kolmogorov's equation. The network is able to approximate, numerically at least, the solutions of the Kolmogorov equation with polynomial complexity in whole spatial domains. In this contribution we study variants of the deep networks by using different discretizations schemes of the stochastic differential equation. We compare the performance of the associated networks, on benchmarked examples, and show that, for some discretization schemes, improvements in the accuracy are possible without affecting the observed computational complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源