论文标题

弓品种 - 几何,组合,特征类

Bow varieties---geometry, combinatorics, characteristic classes

论文作者

Rimanyi, R., Shou, Y.

论文摘要

Cherkis Bow品种被认为是一组空间,可以观察到3D镜像对称性。我们通过开发必要的组合表现(包括二进制抗义表和绞线图)来描述大量Cherkis弓品种上的几何结构。我们通过猜测共同体稳定信封的公式,迈出了针对特征类别的3D镜像对称性的所追求的陈述的第一步。此外,我们提供了有关椭圆稳定信封的完整声明的说明。

Cherkis bow varieties are believed to be the set of spaces where 3d mirror symmetry for characteristic classes can be observed. We describe geometric structures on a large class of Cherkis bow varieties by developing the necessary combinatorial presentations, including binary contingency tables and skein diagrams. We make the first steps toward the sought after statement for 3d mirror symmetry for characteristic classes by conjecturing a formula for cohomological stable envelopes. Additionally we provide an account of the full statement, with examples, for elliptic stable envelopes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源