论文标题

伪装背后的自由费

Free fermions behind the disguise

论文作者

Elman, Samuel J., Chapman, Adrian, Flammia, Steven T.

论文摘要

探测量子多体旋转系统物理学的宝贵方法是映射到非互动有效费米子。我们仅使用hamiltonian $ h $的挫败感图$ g $发现了这样的映射,即,在给定的基础上,保利术语之间的反通信关系网络。具体来说,当$ g $是(均匀,爪) - 免费时,即使不存在Jordan-Wigner Transformation,我们也仅使用此结构为$ g $的$ H $构建一个明确的自由信用解决方案。该解决方案方法是通用的,因为它适用于耦合的任何值。该映射概括了XY模型的经典Lieb-Schultz-Mattis解决方案,也概括了Fendley最近给出的自旋链的精确解决方案,被称为“伪装成自由费米子”。像Fendley的原始示例一样,解决该模型的自由武器操作员通常是高度非线性和非本地的,但是可以使用根据$ G $的独立集合定义的转移操作员明确地找到。相关的单粒子能量是使用$ g $的独立性多项式的根来计算的,这是由于Chudnovsky和Seymour的结果保证是真实的。此外,可以在多项式时间内识别(均匀,爪)的无图形,因此识别何时以这种方式溶解旋转模型是有效的。我们给出了几个可解决模型的示例家族,不存在Jordan-Wigner解决方案,我们对使用此方法具有4体耦合的这种自旋链进行了详细的分析。

An invaluable method for probing the physics of a quantum many-body spin system is a mapping to noninteracting effective fermions. We find such mappings using only the frustration graph $G$ of a Hamiltonian $H$, i.e., the network of anticommutation relations between the Pauli terms in $H$ in a given basis. Specifically, when $G$ is (even-hole, claw)-free, we construct an explicit free-fermion solution for $H$ using only this structure of $G$, even when no Jordan-Wigner transformation exists. The solution method is generic in that it applies for any values of the couplings. This mapping generalizes both the classic Lieb-Schultz-Mattis solution of the XY model and an exact solution of a spin chain recently given by Fendley, dubbed "free fermions in disguise." Like Fendley's original example, the free-fermion operators that solve the model are generally highly nonlinear and nonlocal, but can nonetheless be found explicitly using a transfer operator defined in terms of the independent sets of $G$. The associated single-particle energies are calculated using the roots of the independence polynomial of $G$, which are guaranteed to be real by a result of Chudnovsky and Seymour. Furthermore, recognizing (even-hole, claw)-free graphs can be done in polynomial time, so recognizing when a spin model is solvable in this way is efficient. We give several example families of solvable models for which no Jordan-Wigner solution exists, and we give a detailed analysis of such a spin chain having 4-body couplings using this method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源