论文标题

$ \ Mathcal {n} =(1,0)$超级重力背景的对称性在六个维度

Symmetries of $\mathcal{N} = (1,0)$ supergravity backgrounds in six dimensions

论文作者

Kuzenko, Sergei M., Lindström, Ulf, Raptakis, Emmanouil S. N., Tartaglino-Mazzucchelli, Gabriele

论文摘要

可以使用两个完全壁炉的超级空间公式之一来描述一般$ \ Mathcal {n} =(1,0)$六维中的超级式系统系统:(i)$ \ Mathsf {susf {susf {susf {susf {su}(2)$ superspace; (ii)共形超空间。通过在弯曲空间中发展刚性超对称场理论的动机,本文致力于研究超级实力背景的几何对称性。特别是,我们介绍了保形的杀戮旋转旋转超级场$ε^α$的概念,该$ε^α$被证明会产生扩展的超符号转换。其表亲包括保形杀伤向量$ξ^a $和张量$ζ^{a(n)} $ superfields。以前的参数式的超级背景背景的共形异构体,从而产生每个超符号场理论的对称性。同时,给定背景的保形杀伤张量与高度较高的对称性有关。通过研究非符号矢量多重的较高对称性,我们介绍了杀死张量超级场的概念。我们还分析了在弯曲空间中计算较高的符号d'Alembertian的较高对称性的问题,并证明,除了一阶情况外,这些操作员仅在共同平坦的背景下定义了这些操作员。

General $\mathcal{N}=(1,0)$ supergravity-matter systems in six dimensions may be described using one of the two fully fledged superspace formulations for conformal supergravity: (i) $\mathsf{SU}(2)$ superspace; and (ii) conformal superspace. With motivation to develop rigid supersymmetric field theories in curved space, this paper is devoted to the study of the geometric symmetries of supergravity backgrounds. In particular, we introduce the notion of a conformal Killing spinor superfield $ε^α$, which proves to generate extended superconformal transformations. Among its cousins are the conformal Killing vector $ξ^a$ and tensor $ζ^{a(n)}$ superfields. The former parametrise conformal isometries of supergravity backgrounds, which in turn yield symmetries of every superconformal field theory. Meanwhile, the conformal Killing tensors of a given background are associated with higher symmetries of the hypermultiplet. By studying the higher symmetries of a non-conformal vector multiplet we introduce the concept of a Killing tensor superfield. We also analyse the problem of computing higher symmetries for the conformal d'Alembertian in curved space and demonstrate that, beyond the first-order case, these operators are defined only on conformally flat backgrounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源