论文标题

关于P-MLQMC方法中随机现场评估点的选择

On the Selection of Random Field Evaluation Points in the p-MLQMC Method

论文作者

Blondeel, Philippe, Robbe, Pieterjan, François, Stijn, Lombaert, Geert, Vandewalle, Stefan

论文摘要

工程问题通常以其物质参数的严重不确定性为特征。来自岩土工程的一个典型例子是坡度稳定性问题,其中将土壤的内聚力建模为随机场。考虑到这种不确定性的有效方式是一种新型的采样方法,称为P-Refined Multilevel准蒙特卡洛(P-MLQMC)。 P-MLQMC方法使用P-REFINED有限元网格的层次结构与确定性的准蒙特卡洛采样规则相结合。相对于经典的多级蒙特卡洛,这种组合可显着降低计算成本。但是,在先前的工作中,没有足够的考虑如何使用P-MLQMC方法将有限元模型中的不确定性(以随机字段为模型)结合在一起。在目前的工作中,我们研究了如何通过集成点方法充分实现这一目标。因此,我们研究了如何选择随机场的评估点,以使水平降低差异。我们考虑三种不同的方法。这些方法将以计算运行时的斜率稳定性问题进行基准测试。我们发现,对于给定的公差,局部嵌套方法在非巢方法方面的速度最高为第五。

Engineering problems are often characterized by significant uncertainty in their material parameters. A typical example coming from geotechnical engineering is the slope stability problem where the soil's cohesion is modeled as a random field. An efficient manner to account for this uncertainty is the novel sampling method called p-refined Multilevel Quasi-Monte Carlo (p-MLQMC). The p-MLQMC method uses a hierarchy of p-refined Finite Element meshes combined with a deterministic Quasi-Monte Carlo sampling rule. This combination yields a significant computational cost reduction with respect to classic Multilevel Monte Carlo. However, in previous work, not enough consideration was given how to incorporate the uncertainty, modeled as a random field, in the Finite Element model with the p-MLQMC method. In the present work we investigate how this can be adequately achieved by means of the integration point method. We therefore investigate how the evaluation points of the random field are to be selected in order to obtain a variance reduction over the levels. We consider three different approaches. These approaches will be benchmarked on a slope stability problem in terms of computational runtime. We find that for a given tolerance the Local Nested Approach yields a speedup up to a factor five with respect to the Non-Nested approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源