论文标题

带有球体颗粒的单个/多形CLD到PSD问题的新反转方法

New inversion methods for the single/multi-shape CLD-to-PSD problem with spheroid particles

论文作者

Brivadis, Lucas, Sacchelli, Ludovic

论文摘要

在本文中,当将颗粒建模为反应器中的悬浮球体时,我们表达与给定粒径分布(PSD)相关的和弦长度分布(CLD)度量。使用这种方法,我们提出了两种方法来从其CLD中重建未知的PSD。在所有球体都具有相同形状的单形情况下,实施了Tikhonov正则化过程。在多形情况下,测得的CLD混合了与每种形状相关的PSD的贡献。然后,用于批处理结晶过程的进化模型允许基于动态观察者引入来回轻推(BFN)算法。当晶体分为两个簇时,我们证明了这种方法的收敛性:球形和拉长球体。这些方法用数值模拟说明。

In this paper, we express the Chord Length Distribution (CLD) measure associated to a given Particle Size Distribution (PSD) when particles are modeled as suspended spheroids in a reactor. Using this approach, we propose two methods to reconstruct the unknown PSD from its CLD. In the single-shape case where all spheroids have the same shape, a Tikhonov regularization procedure is implemented. In the multi-shape case, the measured CLD mixes the contribution of the PSD associated to each shape. Then, an evolution model for a batch crystallization process allows to introduce a Back and Forth Nudging (BFN) algorithm, based on dynamical observers. We prove the convergence of this method when crystals are split into two clusters: spheres and elongated spheroids. These methods are illustrated with numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源