论文标题
Flavr:快速框架插值的流动视频表示
FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation
论文作者
论文摘要
视频框架插值的大多数方法计算视频相邻帧之间的双向光流,然后使用合适的翘曲算法来生成输出帧。但是,依靠光流的方法通常无法直接从视频中对遮挡和复杂的非线性动作进行建模,并引入了不适合广泛部署的其他瓶颈。我们使用Flavr解决这些限制,Flavr是一种灵活,有效的体系结构,使用3D时空卷积来实现视频框架插值的端到端学习和推断。我们的方法有效地学习了有关非线性动作,复杂的闭塞和时间抽象的推理,从而改善了视频插值的性能,同时不需要以光流或深度图的形式进行其他输入。由于其简单性,Flavr与当前最精确的插值方法中最精确的方法相比,可以更快地提供3倍的推理速度,而不会丢失插值精度。此外,我们在各种具有挑战性的环境中评估了Flavr,并且与包括Vimeo-90K,UCF101,Davis,Adobe和Gopro(包括Vimeo-90K,UCF101,Adobe和Gopro)的先前方法相比,与先前的方法相比,与先前的方法相比,始终如一地表现出了优越的定性和定量结果。最后,我们证明了用于视频框架插值的Flavr可以作为动作识别,光流估计和运动放大的有用的自制借口任务。
A majority of methods for video frame interpolation compute bidirectional optical flow between adjacent frames of a video, followed by a suitable warping algorithm to generate the output frames. However, approaches relying on optical flow often fail to model occlusions and complex non-linear motions directly from the video and introduce additional bottlenecks unsuitable for widespread deployment. We address these limitations with FLAVR, a flexible and efficient architecture that uses 3D space-time convolutions to enable end-to-end learning and inference for video frame interpolation. Our method efficiently learns to reason about non-linear motions, complex occlusions and temporal abstractions, resulting in improved performance on video interpolation, while requiring no additional inputs in the form of optical flow or depth maps. Due to its simplicity, FLAVR can deliver 3x faster inference speed compared to the current most accurate method on multi-frame interpolation without losing interpolation accuracy. In addition, we evaluate FLAVR on a wide range of challenging settings and consistently demonstrate superior qualitative and quantitative results compared with prior methods on various popular benchmarks including Vimeo-90K, UCF101, DAVIS, Adobe, and GoPro. Finally, we demonstrate that FLAVR for video frame interpolation can serve as a useful self-supervised pretext task for action recognition, optical flow estimation, and motion magnification.