论文标题

Riemann假设的重新制定

A Reformulation of the Riemann Hypothesis

论文作者

Sousa, Jose Risomar

论文摘要

我们介绍了Riemann Zeta功能的一些新颖性。使用上一篇论文中为Polyogarithm创建的扩展公式,$ \ Mathrm {li} _ {k}(e^{z})$,Zeta Function的Dirichlet系列从$ \ re(k)> 1 $从右半PLANE,$ \ re(k)$ \ re(k)$ \ re(k)> 0 $ $ \ re(k)> 0 $ $ \ re(k)> 0 $ $ \ re \ reichelet。更引人注目的是,我们通过Zeta的堂兄$φ(k)$进行了对Riemann假设的重新制定,这是在整个复合平面上定义的无极性函数,其非平凡的零与Zeta功能相吻合。

We present some novelties on the Riemann zeta function. Using an extended formula created for the polylogarithm in a previous paper, $\mathrm{Li}_{k}(e^{z})$, the zeta function's Dirichlet series is analytically continued from $\Re(k)>1$ to the right half-plane, $\Re(k)>0$, by means of the Dirichlet eta function. More strikingly, we offer a reformulation of the Riemann hypothesis through a zeta's cousin, $φ(k)$, a pole-free function defined on the entire complex plane whose non-trivial zeros coincide with those of the zeta function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源