论文标题

Foggysight:面部查找隐私方案

FoggySight: A Scheme for Facial Lookup Privacy

论文作者

Evtimov, Ivan, Sturmfels, Pascal, Kohno, Tadayoshi

论文摘要

深度学习算法的进步使面部识别任务的表现优于人类的表现。同时,私人公司一直在刮擦社交媒体和其他公共网站,这些网站将照片与身份联系起来,并建立了大型标记面部图像的数据库。现在,在这些数据库中的搜索是为执法和其他人提供的服务,并为社交媒体用户带来多种隐私风险。在这项工作中,我们解决了从这种面部识别系统中提供隐私的问题。我们提出和评估Foggysight,该解决方案适用于从对抗性示例中学到的经验教训,以在将其上传到社交媒体之前以隐私的方式修改面部照片。 Foggysight的核心功能是一种社区保护策略,用户充当其他人的保护者,上传借用机器学习算法生成的诱饵照片。我们探索了该计划的不同设置,并发现它确实可以保护面部隐私,包括反对未知内部的面部识别服务。

Advances in deep learning algorithms have enabled better-than-human performance on face recognition tasks. In parallel, private companies have been scraping social media and other public websites that tie photos to identities and have built up large databases of labeled face images. Searches in these databases are now being offered as a service to law enforcement and others and carry a multitude of privacy risks for social media users. In this work, we tackle the problem of providing privacy from such face recognition systems. We propose and evaluate FoggySight, a solution that applies lessons learned from the adversarial examples literature to modify facial photos in a privacy-preserving manner before they are uploaded to social media. FoggySight's core feature is a community protection strategy where users acting as protectors of privacy for others upload decoy photos generated by adversarial machine learning algorithms. We explore different settings for this scheme and find that it does enable protection of facial privacy -- including against a facial recognition service with unknown internals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源