论文标题

多模式Asyndgan:从分布式医疗图像数据中学习而无需共享私人信息

Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without Sharing Private Information

论文作者

Chang, Qi, Yan, Zhennan, Baskaran, Lohendran, Qu, Hui, Zhang, Yikai, Zhang, Tong, Zhang, Shaoting, Metaxas, Dimitris N.

论文摘要

随着深度学习技术的发展,越来越多的数据是为各种任务生成一般和健壮的模型所需的数据。但是,在医疗领域中,由于隐私和数据安全问题,大规模和多方数据培训和分析是不可行的。在本文中,我们提出了一个可扩展的弹性学习框架,以保持隐私和安全性,同时通过有效的沟通来实现协作学习。所提出的框架被命名为分布式异步歧视器生成对抗网络(Asyndgan),该网络由集中式生成器和多个分布式歧视器组成。我们提出的框架的优点是五倍:1)中央发电机可以隐式地从多个数据集中学习真实的数据分布而无需共享图像数据; 2)该框架适用于单模式或多模式数据; 3)学习生成器可用于合成样品以进行下游学习任务,以实现近距离的性能,例如使用从多个数据中心收集的实际样品; 4)合成样本也可以用于增强数据中心的数据或完全缺失的方式; 5)学习过程比其他分布式深度学习方法更有效,需要更低的带宽。

As deep learning technologies advance, increasingly more data is necessary to generate general and robust models for various tasks. In the medical domain, however, large-scale and multi-parties data training and analyses are infeasible due to the privacy and data security concerns. In this paper, we propose an extendable and elastic learning framework to preserve privacy and security while enabling collaborative learning with efficient communication. The proposed framework is named distributed Asynchronized Discriminator Generative Adversarial Networks (AsynDGAN), which consists of a centralized generator and multiple distributed discriminators. The advantages of our proposed framework are five-fold: 1) the central generator could learn the real data distribution from multiple datasets implicitly without sharing the image data; 2) the framework is applicable for single-modality or multi-modality data; 3) the learned generator can be used to synthesize samples for down-stream learning tasks to achieve close-to-real performance as using actual samples collected from multiple data centers; 4) the synthetic samples can also be used to augment data or complete missing modalities for one single data center; 5) the learning process is more efficient and requires lower bandwidth than other distributed deep learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源