论文标题

基于事件的运动分割,以时空图切割

Event-based Motion Segmentation with Spatio-Temporal Graph Cuts

论文作者

Zhou, Yi, Gallego, Guillermo, Lu, Xiuyuan, Liu, Siqi, Shen, Shaojie

论文摘要

识别独立移动的对象是动态场景理解的重要任务。但是,由于采样原理,在动态场景中使用的传统摄像机可能会遭受运动模糊或暴露伪像。相比之下,基于事件的相机是新型的生物启发的传感器,可提供克服此类局限性的优势。他们报告了P​​ixelwise强度异步变化,这使他们能够以与场景动态完全相同的速率获取视觉信息。我们开发了一种方法来识别使用基于事件的摄像机(即解决基于事件的运动分割问题)获得的独立移动对象。我们将该问题作为一种能量最小化,涉及多个运动模型的拟合。我们通过以时空图形的形式利用输入事件数据的结构来共同解决两个子问题,即事件群集分配(标签)和运动模型拟合。可用数据集的实验证明了该方法在具有不同运动模式和移动对象数量的场景中的多功能性。评估显示了最新的结果,而不必预先确定预期的移动对象的数量。我们将软件和数据集释放在开源许可下,以在基于事件的运动分段的新兴主题中培养研究。

Identifying independently moving objects is an essential task for dynamic scene understanding. However, traditional cameras used in dynamic scenes may suffer from motion blur or exposure artifacts due to their sampling principle. By contrast, event-based cameras are novel bio-inspired sensors that offer advantages to overcome such limitations. They report pixelwise intensity changes asynchronously, which enables them to acquire visual information at exactly the same rate as the scene dynamics. We develop a method to identify independently moving objects acquired with an event-based camera, i.e., to solve the event-based motion segmentation problem. We cast the problem as an energy minimization one involving the fitting of multiple motion models. We jointly solve two subproblems, namely event cluster assignment (labeling) and motion model fitting, in an iterative manner by exploiting the structure of the input event data in the form of a spatio-temporal graph. Experiments on available datasets demonstrate the versatility of the method in scenes with different motion patterns and number of moving objects. The evaluation shows state-of-the-art results without having to predetermine the number of expected moving objects. We release the software and dataset under an open source licence to foster research in the emerging topic of event-based motion segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源