论文标题

几何Zweier收敛型腔序列空间

Geometric ZWEIER Convergent Lacunary Sequence Spaces

论文作者

Singh, S., Dutta, S.

论文摘要

本文的主要目的是介绍液体强大的几何Zweier conveier convergent序列$ n_ {θ}}^{0}^{0} \ left [z \ left [z \ left(g \ oright)\ right] $,$ n_ {θ}} \ left [z \ left [z \ left [z \ left [z \ left(g \ oyt) \ weft [z \ left(g \ firt)\右] $由所有序列组成$ x = \ left(x_ {k} \ right)$,以至于$ \ left [z \ left(g \ right)\右] x $在空格中} n_ {θ}^{\ infty} $,它们是标准的。我们证明了这些空间的某些拓扑特性,并计算了它们的脱粒Zweier收敛。

The main purpose of this paper is to introduce lacunary strong geometric zweier convergent sequence spaces $N_{θ}^{0} \left[Z\left(G\right)\right]$, $N_{θ} \left[Z\left(G\right)\right]$, $N_{θ}^{\infty } \left[Z\left(G\right)\right]$consisting of all sequences $x=\left(x_{k} \right)$such that $\left[Z\left(G\right)\right]x$ are in the spaces $N_{θ}^{0} ,N_{θ} {\rm and\; }N_{θ}^{\infty } $ respectively, which are normed. We prove certain topological properties of these spaces and compute their lacunary stastical zweier convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源