论文标题
模式分类问题与统计推断的一般线性模型之间的连接
A connection between the pattern classification problem and the General Linear Model for statistical inference
论文作者
论文摘要
本文描述了一般线性模型(GLM)与经典统计推断与机器学习(MLE)的推理之间的联系。首先,GLM参数的估计表示为指示矩阵的线性回归模型(LRM),即,就回归观测值的反问题而言。换句话说,这两种方法(即GLM和LRM)都适用于不同的域,观察域和标签域,并在最小二乘解决方案下通过归一化值链接。随后,从这种关系中,我们根据更精炼的预测算法得出了统计检验,即(非)线性支持向量机(SVM)在排列分析中最大化分离的类别范围。基于MLE的推理采用剩余分数,并包括上限,以更好地计算对实际(实际)误差的更好估计。实验结果证明了从每个模型得出的参数估计如何在等效反问题中导致不同的分类性能。此外,使用真实数据,上述预测算法在排列测试中(包括此类无模型估计器)能够在I型错误和统计功率之间提供良好的权衡。
A connection between the General Linear Model (GLM) in combination with classical statistical inference and the machine learning (MLE)-based inference is described in this paper. Firstly, the estimation of the GLM parameters is expressed as a Linear Regression Model (LRM) of an indicator matrix, that is, in terms of the inverse problem of regressing the observations. In other words, both approaches, i.e. GLM and LRM, apply to different domains, the observation and the label domains, and are linked by a normalization value at the least-squares solution. Subsequently, from this relationship we derive a statistical test based on a more refined predictive algorithm, i.e. the (non)linear Support Vector Machine (SVM) that maximizes the class margin of separation, within a permutation analysis. The MLE-based inference employs a residual score and includes the upper bound to compute a better estimation of the actual (real) error. Experimental results demonstrate how the parameter estimations derived from each model resulted in different classification performances in the equivalent inverse problem. Moreover, using real data the aforementioned predictive algorithms within permutation tests, including such model-free estimators, are able to provide a good trade-off between type I error and statistical power.