论文标题

丽兹值,主角度和光谱扩散的绝对变化

Absolute variation of Ritz values, principal angles and spectral spread

论文作者

Massey, Pedro, Stojanoff, Demetrio, Zarate, Sebastian

论文摘要

Let $A$ be a $d\times d$ complex self-adjoint matrix, $\mathcal{X},\mathcal{Y}\subset \mathbb{C}^d$ be $k$-dimensional subspaces and let $X$ be a $d\times k$ complex matrix whose columns form an orthonormal basis of $\mathcal{X}$. We construct a $d\times k$ complex matrix $Y_r$ whose columns form an orthonormal basis of $\mathcal{Y}$ and obtain sharp upper bounds for the singular values $s(X^*AX-Y_r^*\,A\,Y_r)$ in terms of submajorization relations involving the principal angles between $\mathcal{X}$ and $ \ MATHCAL {y} $和$ a $的频谱传播。我们将这些结果应用于获得与子空间$ \ MATHCAL {x} $和$ \ MATHCAL {y} $相关的$ a $的绝对变化的尖锐上限,这是Knyazev和Argenti的部分确认的猜想。

Let $A$ be a $d\times d$ complex self-adjoint matrix, $\mathcal{X},\mathcal{Y}\subset \mathbb{C}^d$ be $k$-dimensional subspaces and let $X$ be a $d\times k$ complex matrix whose columns form an orthonormal basis of $\mathcal{X}$. We construct a $d\times k$ complex matrix $Y_r$ whose columns form an orthonormal basis of $\mathcal{Y}$ and obtain sharp upper bounds for the singular values $s(X^*AX-Y_r^*\,A\,Y_r)$ in terms of submajorization relations involving the principal angles between $\mathcal{X}$ and $\mathcal{Y}$ and the spectral spread of $A$. We apply these results to obtain sharp upper bounds for the absolute variation of the Ritz values of $A$ associated with the subspaces $\mathcal{X}$ and $\mathcal{Y}$, that partially confirm conjectures by Knyazev and Argentati.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源