论文标题

随时间探测宇宙电气离子和分子气体生长

Probing Cosmic Reionization and Molecular Gas Growth with TIME

论文作者

Sun, Guochao, Chang, Tzu-Ching, Uzgil, Bade D., Bock, Jamie, Bradford, Charles M., Butler, Victoria, Caze-Cortes, Tessalie, Cheng, Yun-Ting, Cooray, Asantha, Crites, Abigail T., Hailey-Dunsheath, Steve, Emerson, Nick, Frez, Clifford, Hoscheit, Benjamin L., Hunacek, Jonathon R., Keenan, Ryan P., Li, Chao-Te, Madonia, Paolo, Marrone, Daniel P., Moncelsi, Lorenzo, Shiu, Corwin, Trumper, Isaac, Turner, Anthony, Weber, Alexis, Wei, Ta-Shun, Zemcov, Michael

论文摘要

线强度映射(LIM)通过测量来自红移的所有星系的聚集线发射,提供了一种独特而有力的方法来探测宇宙结构。该方法与常规的Galaxy红移调查互补,这些调查是基于对象的,并且需要精致的点源灵敏度。层析成像离子化 - 碳映射实验(时间)将通过观察lim状态下的红移[CII] 158 $ $ m $ m线($ 6 \ Lessim z \ Lessim 9 $)来测量宇宙电离期间的恒星形成速率(SFR)。时间将通过观察星系以$ 0.5 \ Lessim Z \ Lessim 2 $的观察到峰值恒星形成的时代同时研究分子气的丰度。我们介绍了建模框架,该框架可以预测许多可观察到的时间的约束能力,包括线路亮度函数以及自动和互相关功率谱,包括具有外部星系示踪剂的协同作用。基于现有观测值所告知的优化的调查策略和基准模型参数,我们预测了与电离和星系进化相关的物理数量的约束,例如电离光子在电离期间的逃生分数,在高红丝和宇球体cosmic Inerecular cosmular cosmelcular cosmical cosmical Atsmic nonon中的星系亮度的微弱端端斜率。我们讨论了这些约束如何在2021年开始的两个不同的宇宙时代的宇宙星系演变中提高我们对宇宙星系演变的理解,以及如何在实验的未来阶段中改善它们。

Line intensity mapping (LIM) provides a unique and powerful means to probe cosmic structures by measuring the aggregate line emission from all galaxies across redshift. The method is complementary to conventional galaxy redshift surveys that are object-based and demand exquisite point-source sensitivity. The Tomographic Ionized-carbon Mapping Experiment (TIME) will measure the star formation rate (SFR) during cosmic reionization by observing the redshifted [CII] 158$μ$m line ($6 \lesssim z \lesssim 9$) in the LIM regime. TIME will simultaneously study the abundance of molecular gas during the era of peak star formation by observing the rotational CO lines emitted by galaxies at $0.5 \lesssim z \lesssim 2$. We present the modeling framework that predicts the constraining power of TIME on a number of observables, including the line luminosity function, and the auto- and cross-correlation power spectra, including synergies with external galaxy tracers. Based on an optimized survey strategy and fiducial model parameters informed by existing observations, we forecast constraints on physical quantities relevant to reionization and galaxy evolution, such as the escape fraction of ionizing photons during reionization, the faint-end slope of the galaxy luminosity function at high redshift, and the cosmic molecular gas density at cosmic noon. We discuss how these constraints can advance our understanding of cosmological galaxy evolution at the two distinct cosmic epochs for TIME, starting in 2021, and how they could be improved in future phases of the experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源