论文标题

检测数据漂移和影响机器学习模型性能的离群值

Detection of data drift and outliers affecting machine learning model performance over time

论文作者

Ackerman, Samuel, Farchi, Eitan, Raz, Orna, Zalmanovici, Marcel, Dube, Parijat

论文摘要

训练有素的ML模型被部署在另一个“测试”数据集上,其中目标特征值(标签)未知。漂移是培训数据和部署数据之间的分配变化,这是关于模型性能是否改变的。例如,对于猫/狗图像分类器,部署过程中的漂移可能是兔子图像(新类)或具有变化特征(分布变化)的猫/狗图像。我们希望检测这些更改,但没有部署数据标签,无法衡量准确性。相反,我们通过非参数测试模型预测置信度变化的分布间接检测到漂移。这概括了我们的方法,并避开了特定于域特异性特征表示。 我们使用变更点模型(CPMS;参见Adams and Ross 2012)解决了重要的统计问题,尤其是在顺序测试中类型1误差控制。我们还使用非参数异常方法来显示用户可疑观察结果以诊断模型诊断,因为更改置信度分布显着重叠。在证明鲁棒性的实验中,我们在MNIST数字类别的子集上进行训练,然后在各种设置中的部署数据中插入漂移(例如,看不见的数字类别)(漂移比例的逐渐/突然变化)。引入了新的损失函数,以比较不同水平的漂移类污染的漂移检测器的性能(检测延迟,1型和2个误差)。

A trained ML model is deployed on another `test' dataset where target feature values (labels) are unknown. Drift is distribution change between the training and deployment data, which is concerning if model performance changes. For a cat/dog image classifier, for instance, drift during deployment could be rabbit images (new class) or cat/dog images with changed characteristics (change in distribution). We wish to detect these changes but can't measure accuracy without deployment data labels. We instead detect drift indirectly by nonparametrically testing the distribution of model prediction confidence for changes. This generalizes our method and sidesteps domain-specific feature representation. We address important statistical issues, particularly Type-1 error control in sequential testing, using Change Point Models (CPMs; see Adams and Ross 2012). We also use nonparametric outlier methods to show the user suspicious observations for model diagnosis, since the before/after change confidence distributions overlap significantly. In experiments to demonstrate robustness, we train on a subset of MNIST digit classes, then insert drift (e.g., unseen digit class) in deployment data in various settings (gradual/sudden changes in the drift proportion). A novel loss function is introduced to compare the performance (detection delay, Type-1 and 2 errors) of a drift detector under different levels of drift class contamination.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源