论文标题

变分量子算法

Variational Quantum Algorithms

论文作者

Cerezo, M., Arrasmith, Andrew, Babbush, Ryan, Benjamin, Simon C., Endo, Suguru, Fujii, Keisuke, McClean, Jarrod R., Mitarai, Kosuke, Yuan, Xiao, Cincio, Lukasz, Coles, Patrick J.

论文摘要

由于非常高的计算成本,诸如模拟复杂的量子系统或解决大规模线性代数问题的应用程序对于古典计算机非常具有挑战性。量子计算机承诺解决方案,尽管在不久的将来可能无法使用容忍故障的量子计算机。当前的量子设备具有严重的限制,包括限制电路深度的量子数和噪声过程有限。使用经典优化器训练参数化量子电路的变异量子算法(VQA)已成为解决这些约束的领先策略。现在,已经为研究人员设想用于量子计算机的所有应用而提出了VQA,并且它们似乎是获得量子优势的最大希望。然而,仍然存在挑战,包括VQA的训练性,准确性和效率。在这里,我们概述了VQA的领域,讨论克服挑战的策略,并强调使用它们获得量子优势的令人兴奋的前景。

Applications such as simulating complicated quantum systems or solving large-scale linear algebra problems are very challenging for classical computers due to the extremely high computational cost. Quantum computers promise a solution, although fault-tolerant quantum computers will likely not be available in the near future. Current quantum devices have serious constraints, including limited numbers of qubits and noise processes that limit circuit depth. Variational Quantum Algorithms (VQAs), which use a classical optimizer to train a parametrized quantum circuit, have emerged as a leading strategy to address these constraints. VQAs have now been proposed for essentially all applications that researchers have envisioned for quantum computers, and they appear to the best hope for obtaining quantum advantage. Nevertheless, challenges remain including the trainability, accuracy, and efficiency of VQAs. Here we overview the field of VQAs, discuss strategies to overcome their challenges, and highlight the exciting prospects for using them to obtain quantum advantage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源