论文标题

改善delsarte界限

Improving the Delsarte bound

论文作者

Greaves, Gary R. W., Koolen, Jack H., Park, Jongyook

论文摘要

在本文中,我们通过考虑一个与最大群集的某些(但不是全部)顶点相邻的顶点,研究具有最大固定特征值的最大定期图中最大集团的顺序。结果,我们表明,如果强烈规则的图包含一个delsarte集团,则参数$μ$很小或大。 此外,我们获得了一个立方多项式,该立方多项式确保在较高的规则图中的最大集团很小或大(在某些假设下)。将这种立方多项式与爪结合结合,我们排除了一个可行参数的无限家族$(v,k,λ,μ)$,用于强烈规则的图形。最后,我们提供参数$(v,k,λ,μ)$的表格,对于不存在的强烈常规图,特征最小的$ -4,-5,-5,-6 $或$ -7 $。

In this paper, we study the order of a maximal clique in an amply regular graph with a fixed smallest eigenvalue by considering a vertex that is adjacent to some (but not all) vertices of the maximal clique. As a consequence, we show that if a strongly regular graph contains a Delsarte clique, then the parameter $μ$ is either small or large. Furthermore, we obtain a cubic polynomial that assures that a maximal clique in an amply regular graph is either small or large (under certain assumptions). Combining this cubic polynomial with the claw-bound, we rule out an infinite family of feasible parameters $(v,k,λ,μ)$ for strongly regular graphs. Lastly, we provide tables of parameters $(v,k,λ,μ)$ for nonexistent strongly regular graphs with smallest eigenvalue $-4, -5, -6$ or $-7$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源