论文标题
与不确定性的查询竞争性分类
Query-Competitive Sorting with Uncertainty
论文作者
论文摘要
当使用查询解决不确定性时,我们研究了在不完整信息下进行分类的问题。 $ n $数据项中的每一个都有一个未知的值,已知在给定间隔中。我们可以支付查询成本来学习实际值,并且我们可能允许分类中的错误阈值。目的是通过执行一组最低成本的查询来找到几乎排序的置换。 我们表明,脱机最佳查询集可以在多个时间段内找到,并且遗忘和适应性问题都具有简单的竞争算法。遗忘问题的竞争比率为统一查询成本的$ n $,并且不受限制的任意费用;对于自适应问题,比率为2。 我们提出了统一成本的统一自适应策略,从而产生以下改进的结果:(1)3/2竞争性的随机算法; (2)5/3竞争性的确定性算法如果依赖关系图在某些预处理后没有2个组件,则具有竞争比$ 3/2+\ MATHRM {O}(1/k)$,如果所获得的组件至少具有至少$ k $; (3)间隔层流的精确算法。前两个结果具有匹配的下限,并且对于大型组件,我们的下限为7/5。 我们还提供了一种随机自适应算法,具有竞争比率$ 1+\ frac {4} {3 \ sqrt {3}} \约1.7698 $,以进行任意查询,并且我们表明,通过返回的范围,可以使用2个功能的确定性适应性算法来供您返回2次效率的确定性algorithm,以供您返回更多的问题,以便更多地返回一般性的信息,以便更多地返回一般的信息。此外,我们证明,自适应问题的建议复杂性是$ \ lfloor n/2 \ rfloor $,如果不允许阈值,而$ \ lceil n/3 \ cdot \ cdot \ lg 3 \ rceil $用于一般情况。 最后,我们在共同阈值公差图上介绍了一些图理论结果,并讨论了某些经典间隔问题的不确定性变体。
We study the problem of sorting under incomplete information, when queries are used to resolve uncertainties. Each of $n$ data items has an unknown value, which is known to lie in a given interval. We can pay a query cost to learn the actual value, and we may allow an error threshold in the sorting. The goal is to find a nearly-sorted permutation by performing a minimum-cost set of queries. We show that an offline optimum query set can be found in poly time, and that both oblivious and adaptive problems have simple competitive algorithms. The competitive ratio for the oblivious problem is $n$ for uniform query costs, and unbounded for arbitrary costs; for the adaptive problem, the ratio is 2. We present a unified adaptive strategy for uniform costs that yields the following improved results: (1) a 3/2-competitive randomized algorithm; (2) a 5/3-competitive deterministic algorithm if the dependency graph has no 2-components after some preprocessing, which has competitive ratio $3/2+\mathrm{O}(1/k)$ if the components obtained have size at least $k$; and (3) an exact algorithm for laminar families of intervals. The first two results have matching lower bounds, and we have a lower bound of 7/5 for large components. We also give a randomized adaptive algorithm with competitive ratio $1+\frac{4}{3\sqrt{3}}\approx 1.7698$ for arbitrary query costs, and we show that the 2-competitive deterministic adaptive algorithm can be generalized for queries returning intervals and for a more general vertex cover problem, by using the local ratio technique. Moreover, we prove that the advice complexity of the adaptive problem is $\lfloor n/2\rfloor$ if no error threshold is allowed, and $\lceil n/3\cdot\lg 3\rceil$ for the general case. Finally, we present some graph-theoretical results on co-threshold tolerance graphs, and we discuss uncertainty variants of some classical interval problems.