论文标题
关于与无限添加剂补充有关的陈和方问题
On a problem of Chen and Fang related to infinite additive complements
论文作者
论文摘要
如果它们的集合包含每个非负整数,则两个无限的$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a。 1964年,丹泽(Danzer)构建了无限添加剂,$ a $ a $ a $ a $ a $ a $ a(x)b(x)=(1 + o(1))x $ as $ x \ rightarrow \ infty $,其中$ a(x)$ a(x)$和$ b(x)$分别表示sets $ a $ a $ a $和$ b $的计数功能。在本文中,我们通过扩展Danzer的构建解决了Chen和Fang的问题。
Two infinite sets $A$ and $B$ of nonnegative integers are called additive complements if their sumset contains every nonnegative integer. In 1964, Danzer constructed infinite additive complements $A$ and $B$ with $A(x)B(x) = (1 + o(1))x$ as $x \rightarrow \infty$, where $A(x)$ and $B(x)$ denote the counting function of the sets $A$ and $B$, respectively. In this paper we solve a problem of Chen and Fang by extending the construction of Danzer.