论文标题
应变诱导的金属化和在拉链样互连的原子较薄的界面上,可实现高效卤化物钙钛矿太阳能电池
Strain-induced metallization and defect suppression at zipper-like interdigitated atomically thin interfaces enabling high-efficiency halide perovskite solar cells
论文作者
论文摘要
卤化物钙钛矿光吸收器对于诸如有效的太阳能吸收等光伏电源具有很大的优势,但是与电子传输层(ETL)在界面处的电荷积累和重组仍然是实现其全部潜力的主要挑战。在这里,我们报告了基于PB的卤化物钙钛矿光吸收剂和通过ETL表面的PBO封盖在基于PB的卤化物钙钛矿光吸收器和氧化物ETL之间的实验实现,ETL表面可产生原子上的二维金属层,可以显着增强Perovskite/etl电荷提取过程。作为紧急二维互助金属性的原子源,对代表性mapbi $ _3 $ _3 $/tio $ _2 $界面进行的第一原理计算确定了由同时形成的I-substitutional pb bongs $ pb-i-pb $ tio $ tio $ tio $ tio $ tio $ tio $ tio $ tio $ tio $ tio $ tio $ tio $ tio $ _2合同的替代性PB-O债券。提供了有关界面金属状态的直接和间接实验证据,并强调了紧张的互插的perovskite/etl界面的非惯性缺陷性质。实验证明,PBO封端方法通常适用于其他ETL材料,包括ZnO和SRTIO $ _3 $,并且Zipper样的互相互相的金属界面可导致电荷提取率提高约2倍。最后,就光伏效率而言,我们观察到一种火山型行为,在单层级PBO封盖下的性能最高。此处建立的方法可能被证明是一种通用界面工程方法,可以实现高性能钙钛矿太阳能电池。
Halide perovskite light absorbers have great advantages for photovoltaics such as efficient solar energy absorption, but charge accumulation and recombination at the interface with an electron transport layer (ETL) remains a major challenge in realizing their full potential. Here we report the experimental realization of a zipper-like interdigitated interface between a Pb-based halide perovskite light absorber and an oxide ETL by the PbO capping of the ETL surface, which produces an atomically thin two-dimensional metallic layer that can significantly enhance the perovskite/ETL charge extraction process. As the atomistic origin of the emergent two-dimensional interfacial metallicity, first-principles calculations performed on the representative MAPbI$_3$/TiO$_2$ interface identify the interfacial strain induced by the simultaneous formation of stretched I-substitutional Pb bonds (and thus Pb-I-Pb bonds bridging MAPbI$_3$ and TiO$_2$) and contracted substitutional Pb-O bonds. Direct and indirect experimental evidences for the presence of interfacial metallic states are provided, and a non-conventional defect-passivating nature of the strained interdigitated perovskite/ETL interface is emphasized. It is experimentally demonstrated that the PbO capping method is generally applicable to other ETL materials including ZnO and SrTiO$_3$, and that the zipper-like interdigitated metallic interface leads to about two-fold increase in charge extraction rate. Finally, in terms of the photovoltaic efficiency, we observe a volcano-type behavior with the highest performance achieved at the monolayer-level PbO capping. The method established here might prove to be a general interface engineering approach to realize high-performance perovskite solar cells.