论文标题
经典粒子波实体的不稳定动力学
Unsteady dynamics of a classical particle-wave entity
论文作者
论文摘要
在垂直振动液浴的表面上蹦蹦跳跳的液滴可以水平行走,并由其在每个撞击上产生的波浪引导。这导致了自构成的经典粒子波实体。通过使用具有广义波形的一维理论试验波模型,我们研究了该粒子波实体的动力学。我们采用不同的空间波形来理解行走动力学中波振荡和空间波衰减的作用。我们观察到稳定的步行运动以及不稳定的运动,例如振荡步行,自我捕获的振荡和不规则行走。我们探索不规则行走的动力学和统计方面,并显示了液滴动力学和洛伦兹系统之间的等效性,并与Langevin方程和确定性扩散建立了连接。
A droplet bouncing on the surface of a vertically vibrating liquid bath can walk horizontally, guided by the waves it generates on each impact. This results in a self-propelled classical particle-wave entity. By using a one-dimensional theoretical pilot-wave model with a generalized wave form, we investigate the dynamics of this particle-wave entity. We employ different spatial wave forms to understand the role played by both wave oscillations and spatial wave decay in the walking dynamics. We observe steady walking motion as well as unsteady motions such as oscillating walking, self-trapped oscillations and irregular walking. We explore the dynamical and statistical aspects of irregular walking and show an equivalence between the droplet dynamics and the Lorenz system, as well as making connections with the Langevin equation and deterministic diffusion.