论文标题
YNET:一个多输入卷积网络,用于实地发展的超快速模拟
yNet: a multi-input convolutional network for ultra-fast simulation of field evolvement
论文作者
论文摘要
多输入场到视野回归的能力,即将初始场和应用条件映射到进化场上,这是吸引人的,可以在许多学科中对各种场的超快速物理模拟进行超快速的物理模拟。我们在此提出了Y形多输入深卷积网络YNET,该网络可以有效地解释多个混合输入对输出场的组合效果。提出的YNET应用于选择性激光烧结(SLS)中孔隙率演变的模拟。测试后,YNET可以模拟与基于物理的模型的几乎相同的孔隙率演化和发育,对于各种SLS条件,形态相似性为99.13%。然后,我们毫不费力地将孔隙率仿真能力提高到了现实的,完整的组件级别。 YNET通常适用于模拟各种结构/形态学的演变以及其他条件连续的,连续的场演化,即使在空间和/或时间不均匀的演化动力学上也是如此。经过训练后,轻巧的YNET可以轻松分发,并在有限的计算资源中运行,同时将计算时间减少到一秒钟。因此,通过使各种领域发展的超快速和极端模拟的能力民主化,它可能会产生变革性的影响。
The capability of multi-input field-to-field regression, i.e. mapping the initial field and applied conditions to the evolved field, is appealing, enabling ultra-fast physics-free simulation of various field evolvements across many disciplines. We hereby propose a y-shaped multi-input deep convolutional network, yNet, which can effectively account for combined effects of multiple mixed inputs on output field. The proposed yNet is applied to the simulation of porosity evolution in selective lasering sintering (SLS). Upon testing, yNet can simulate nearly identical porosity evolution and development to the physics-based model, with a 99.13% morphological similarity for various SLS conditions. We then effortlessly boost the porosity simulation capability to the realistic, full-component level. yNet is generally applicable to simulating various structural/morphological evolutions and other condition-concerned, continuous field evolvements even with spatially and/or temporally non-uniform evolving kinetics. Once trained, the light-weight yNet can be distributed easily and ran with limited computational resource while reducing computation time to a split second. It thus may have a transformative impact by democratizing the capability of ultra-fast and extreme-scale simulation of various field evolvements.