论文标题

使用带有输出反馈的光子储存计算机的随机模式和频率生成

Random pattern and frequency generation using a photonic reservoir computer with output feedback

论文作者

Antonik, Piotr, Hermans, Michiel, Haelterman, Marc, Massar, Serge

论文摘要

储层计算是一种生物启发的计算范式,用于处理时间依赖性信号。其模拟实现的性能与一系列基准任务上的其他数字算法相匹配。通过将输出信号送回储层,可以进一步提高其潜力,这将允许将算法应用于时间序列的生成。原则上,这需要实现足够快的读数层来实时输出计算。在这里,我们通过由FPGA芯片驱动的数字输出层来实现这一目标。我们演示了带有输出反馈的第一台光电储层计算机,并在时间序列生成任务的两个示例中进行测试:频率和随机模式生成。我们在第一个任务上获得了非常好的结果,类似于理想化的数值模拟。然而,第二个的性能遭受了实验噪声。我们通过详细调查了噪声对具有输出反馈的物理储层计算机性能的后果进行详细研究。因此,我们的工作为模拟储层计算打开了新的可能应用,并为噪声对输出反馈的影响带来了新的见解。

Reservoir computing is a bio-inspired computing paradigm for processing time dependent signals. The performance of its analogue implementations matches other digital algorithms on a series of benchmark tasks. Their potential can be further increased by feeding the output signal back into the reservoir, which would allow to apply the algorithm to time series generation. This requires, in principle, implementing a sufficiently fast readout layer for real-time output computation. Here we achieve this with a digital output layer driven by a FPGA chip. We demonstrate the first opto-electronic reservoir computer with output feedback and test it on two examples of time series generation tasks: frequency and random pattern generation. We obtain very good results on the first task, similar to idealised numerical simulations. The performance on the second one, however, suffers from the experimental noise. We illustrate this point with a detailed investigation of the consequences of noise on the performance of a physical reservoir computer with output feedback. Our work thus opens new possible applications for analogue reservoir computing and brings new insights on the impact of noise on the output feedback.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源