论文标题

关于变化的计算中的非本地性

On non-locality in the Calculus of Variations

论文作者

Pedregal, Pablo

论文摘要

在各种pde-contexts和各种问题中都对非局限性进行了深入研究。数值近似也看起来充满挑战,以及这些模型在连续力学和图像分析等领域以及其他领域的应用。尽管关于非本地性的深入而基本的知识越来越深,但对于各种原则,仍然尚未解决到目前为止的非常基本的问题。以其中的一些动机为动机,我们描述了对不同类别的非本地变异原则的一般观点,为分析这种问题的分析设定了计划。我们以最简单的问题开始这样的程序:在特定类别的非局部性类别下,标量,单维情况。即使在这种简单的初始场景中,人们也发现了非常出乎意料的事实,即我们对本地,经典问题的直觉无法指导我们解决这些新问题。在特定情况下,有三个值得突出显示的主要问题: $ \ bullet $天然基础空间涉及不同的非本地类型的衍生物,例如分数Sobolev空间; $ \ bullet $不需要整合的凸面才能使最小化的存在; $ \ bullet $ optimation是根据相当特殊的积分方程而不是微分方程来制定的。 因此,我们能够为激发我们调查的最初问题提供一些具体答案。在随后的论文中,我们将继续考虑由于在完整的矢量(较高的维度情况)中不参与较弱的较低的较低半持续性的可能性所驱动的更高维度的情况。

Non-locality is being intensively studied in various PDE-contexts and in variational problems. The numerical approximation also looks challenging, as well as the application of these models to Continuum Mechanics and Image Analysis, among other areas. Even though there is a growing body of deep and fundamental knowledge about non-locality, for variational principles there are still very basic questions that have not been addressed so far. Taking some of these as a motivation, we describe a general perspective on distinct classes of non-local variational principles setting a program for the analysis of this kind of problems. We start such program with the simplest problem possible: that of scalar, uni-dimensional cases, under a particular class of non-locality. Even in this simple initial scenario, one finds quite unexpected facts to the point that our intuition about local, classic problems can no longer guide us for these new problems. There are three main issues worth highlighting, in the particular situation treated: $\bullet$ natural underlying spaces involve different non-local types of derivatives as, for instance, fractional Sobolev spaces; $\bullet$ no convexity of integrands is required for existence of minimizers; $\bullet$ optimality is formulated in terms of quite special integral equations rather than differential equations. We are thus able to provide some specific answers to the initial questions that motivated our investigation. In subsequent papers, we will move on to consider the higher dimensional situation driven by the possibility that no convexity or quasiconvexity might be involved in weak lower semicontinuity in a full vector, higher dimensional situation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源