论文标题

在ACHLIOPTAS过程中,成长中的网络中的渗滤过渡:分析解决方案

Percolation Transitions in Growing Networks Under Achlioptas Processes: Analytic Solutions

论文作者

Oh, Soo Min, Son, Seung-Woo, Kahng, Byungnam

论文摘要

网络在不同的现实世界中无处不在。随着节点的数量随时间的增加,许多经验网络的增长。在不断增长的随机网络中的渗滤转变可能是无限的顺序。但是,当在某些效果(例如ACHLIOPTAS过程)下抑制大簇的生长时,过渡类型将变为第二阶。但是,临界行为的分析结果,例如过渡点,关键指数和缩放关系很少见。在这里,我们根据控制参数$ m $的函数明确地得出了它们,该函数代表使用缩放ANSATZ的抑制强度。然后,我们通过求解速率方程并执行数值模拟来确认结果。我们的结果清楚地表明,过渡点接近统一和订单参数指数$β$以$ m \至\ infty $的零代数接近零代数,而对于静态网络,它们将这些值成倍接近。此外,对于生长网络而言,上临界尺寸变为$ d_u = 4 $,而静态网络为$ d_u = 2 $。

Networks are ubiquitous in diverse real-world systems. Many empirical networks grow as the number of nodes increases with time. Percolation transitions in growing random networks can be of infinite order. However, when the growth of large clusters is suppressed under some effects, e.g., the Achlioptas process, the transition type changes to the second order. However, analytical results for the critical behavior, such as the transition point, critical exponents, and scaling relations are rare. Here, we derived them explicitly as a function of a control parameter $m$ representing the suppression strength using the scaling ansatz. We then confirmed the results by solving the rate equation and performing numerical simulations. Our results clearly show that the transition point approaches unity and the order-parameter exponent $β$ approaches zero algebraically as $m \to \infty$, whereas they approach these values exponentially for a static network. Moreover, the upper critical dimension becomes $d_u=4$ for growing networks, whereas it is $d_u=2$ for static ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源