论文标题
具有量化不确定性的可塑性的预测性离散多尺度模型
A Predictive Discrete-Continuum Multiscale Model of Plasticity With Quantified Uncertainty
论文作者
论文摘要
材料的多尺度模型,包括对连续模型的升级离散模拟组成,在模拟复杂材料行为的能力方面是独一无二的。多尺度模型的基本限制是它们提供的计算预测中存在不确定性。在这项工作中,已经开发了一个顺序的多尺度模型,其中包含离散的脱位动力学(DDD)模拟和应变梯度可塑性(SGP)模型,以预测金属微柱的塑性变形中的尺寸效应。 DDD模拟包括对具有不同尺寸的微柱单轴压缩,并且在广泛的初始位错密度和位错的空间分布范围内。在连续级别采用了SGP模型,该模型解释了流动应力和硬化速率的尺寸依赖性。已经进行了不确定性分析序列,以评估多尺度模型的预测能力。基于方差的全局灵敏度分析决定了参数不确定性对SGP模型预测的影响。然后,通过使用DDD模拟提供的数据来校准连续模型来构建多尺度模型。实施了一种贝叶斯校准方法,以量化宏观连续体模型预测(塑性变形的尺寸效应)对离散位错模拟(密度和空间分布的密度和空间分布)中的微结构随机性量的不确定性。这项研究的结果表明,尽管DDD结果存在明显的不确定性,但离散的多尺度模型仍可以准确模拟微柱的塑性变形。此外,根据DDD模拟代表的宏观特征,SGP模型可以可靠地预测微柱的可塑性响应的尺寸效应,而误差低于10%
Multiscale models of materials, consisting of upscaling discrete simulations to continuum models, are unique in their capability to simulate complex materials behavior. The fundamental limitation in multiscale models is the presence of uncertainty in the computational predictions delivered by them. In this work, a sequential multiscale model has been developed, incorporating discrete dislocation dynamics (DDD) simulations and a strain gradient plasticity (SGP) model to predict the size effect in plastic deformations of metallic micro-pillars. The DDD simulations include uniaxial compression of micro-pillars with different sizes and over a wide range of initial dislocation densities and spatial distributions of dislocations. An SGP model is employed at the continuum level that accounts for the size-dependency of flow stress and hardening rate. Sequences of uncertainty analyses have been performed to assess the predictive capability of the multiscale model. The variance-based global sensitivity analysis determines the effect of parameter uncertainty on the SGP model prediction. The multiscale model is then constructed by calibrating the continuum model using the data furnished by the DDD simulations. A Bayesian calibration method is implemented to quantify the uncertainty due to microstructural randomness in discrete dislocation simulations (density and spatial distributions of dislocations) on the macroscopic continuum model prediction (size effect in plastic deformation). The outcomes of this study indicate that the discrete-continuum multiscale model can accurately simulate the plastic deformation of micro-pillars, despite the significant uncertainty in the DDD results. Additionally, depending on the macroscopic features represented by the DDD simulations, the SGP model can reliably predict the size effect in plasticity responses of the micropillars with below 10% of error