论文标题
ICME驱动的电击的电子加速效率
The efficiency of electron acceleration by ICME-driven shocks
论文作者
论文摘要
我们介绍了一项研究,该研究是由星际冠状质量弹出(ICMES)驱动的无碰撞冲击波的加速度效率,以及来自航天器观测值和测试粒子模拟的数据分析。这些观察结果来自Yang等人列出的74个冲击事件期间的3DP/EESA仪器。 2019年APJ和测试粒子模拟是通过315例具有不同冲击参数的情况进行的。总共选择了从0.428到4.161 KEV的七个能量通道。在模拟中,使用落后方法,我们计算出$ 90^\ Circ $螺距角度的平均下游通量。另一方面,$ 90^\ Circ $螺距角度的平均下游和上游通量也可以直接从74个观察性冲击事件中获得。此外,就冲击角度(冲击正常和上游磁场之间的角度)而言,下游与上游通量比的变化高于阈值,上游ALFV $ \急性{\ text E} $ n MACH数量,而冲击压缩比是统计获得的。从观察结果和模拟中都表明,大的冲击角度,上游ALFV $ \急性{\ text E} $ n马赫数,冲击压缩比可以提高冲击加速度的效率。我们的结果表明,通过ICME驱动的冲击,冲击漂移加速度在电子加速度上更有效,这证实了Yang等人的发现。 2018。
We present a study of the acceleration efficiency of suprathermal electrons at collisionless shock waves driven by interplanetary coronal mass ejections (ICMEs), with the data analysis from both the spacecraft observations and test-particle simulations. The observations are from the 3DP/EESA instrument onboard \emph{Wind} during the 74 shock events listed in Yang et al. 2019, ApJ, and the test-particle simulations are carried out through 315 cases with different shock parameters. A total of seven energy channels ranging from 0.428 to 4.161 keV are selected. In the simulations, using a backward-in-time method, we calculate the average downstream flux in the $90^\circ$ pitch angle. On the other hand, the average downstream and upstream fluxes in the $90^\circ$ pitch angle can also be directly obtained from the 74 observational shock events. In addition, the variation of the event number ratio with downstream to upstream flux ratio above a threshold value in terms of the shock angle (the angle between the shock normal and upstream magnetic field), upstream Alfv$\acute{\text e}$n Mach number, and shock compression ratio is statistically obtained. It is shown from both the observations and simulations that a large shock angle, upstream Alfv$\acute{\text e}$n Mach number, and shock compression ratio can enhance the shock acceleration efficiency. Our results suggest that shock drift acceleration is more efficient in the electron acceleration by ICME-driven shocks, which confirms the findings of Yang et al. 2018.