论文标题
使用深层对抗训练的领域自适应秋天检测
Domain-adaptive Fall Detection Using Deep Adversarial Training
论文作者
论文摘要
秋季检测(FD)系统是医疗保健的重要辅助技术,可以检测紧急秋季事件并提醒护理人员。但是,在实施精确的FD系统期间,获得具有各种传感器或传感器位置的大规模注释秋季事件并不容易。此外,通过机器学习获得的知识仅限于同一领域中的任务。不同域之间的不匹配可能会阻碍FD系统的性能。跨域知识转移对基于机器学习的FD系统非常有益,可以在新环境中使用标记良好的数据培训可靠的FD模型。在这项研究中,我们使用深层对抗训练(DAT)提出了域自适应跌落检测(DAFD),以解决跨域问题,例如交叉位置和交叉配置。提出的DAFD可以通过最大程度地减少域差异以避免不匹配问题来将知识从源域转移到目标域。实验结果表明,与使用常规FD模型相比,在交叉位置方案中使用DAFD时的平均F1分数改善范围从1.5%到7%,在交叉配置方案中的平均F1分数不等,在交叉配置方案中的平均F1得分范围从3.5%到12%。结果表明,所提出的DAFD成功地有助于解决跨域问题并实现更好的检测性能。
Fall detection (FD) systems are important assistive technologies for healthcare that can detect emergency fall events and alert caregivers. However, it is not easy to obtain large-scale annotated fall events with various specifications of sensors or sensor positions during the implementation of accurate FD systems. Moreover, the knowledge obtained through machine learning has been restricted to tasks in the same domain. The mismatch between different domains might hinder the performance of FD systems. Cross-domain knowledge transfer is very beneficial for machine-learning-based FD systems to train a reliable FD model with well-labeled data in new environments. In this study, we propose domain-adaptive fall detection (DAFD) using deep adversarial training (DAT) to tackle cross-domain problems, such as cross-position and cross-configuration. The proposed DAFD can transfer knowledge from the source domain to the target domain by minimizing the domain discrepancy to avoid mismatch problems. The experimental results show that the average F1-score improvement when using DAFD ranges from 1.5% to 7% in the cross-position scenario, and from 3.5% to 12% in the cross-configuration scenario, compared to using the conventional FD model without domain adaptation training. The results demonstrate that the proposed DAFD successfully helps to deal with cross-domain problems and to achieve better detection performance.