论文标题
OGLE-2017-BLG-1049:另一个巨大的行星微透镜事件
OGLE-2017-BLG-1049: Another giant planet microlensing event
论文作者
论文摘要
我们报告了在微验证事件OGLE-2017-BLG-1049中的一个巨大系外行星发现,该事件是行星主机恒星质量比为$ Q = 9.53 \ pm0.39 \ pm0.39 \ times10^{ - 3} $,并且具有韩国微洛克伦远程网络(KMTNET)的苛刻交叉特征。腐蚀性交叉功能产生的角度爱因斯坦半径为$θ_ {\ rm e} = 0.52 \ pm 0.11 \ {\ rm mas} $。但是,由于事件的时间尺度$ t _ {\ rm e} \ simeq 29 \ {\ rm days} $,因此未测量微丝方视差,在这种情况下,这还不够长,无法确定Microlens parallax。因此,我们进行贝叶斯分析以估计晶状体系统的物理量。 From this, we find that the lens system has a star with mass $M_{\rm h}=0.55^{+0.36}_{-0.29} \ M_{\odot}$ hosting a giant planet with $M_{\rm p}=5.53^{+3.62}_{-2.87} \ m _ {\ rm jup} $,在$ d _ {\ rm l} = 5.67^{+1.11} _ { - 1.52} \ {\ rm kpc} $的距离处。与镜头系统总质量相对应的Einstein Radius $(θ_ {\ rm E})单位的预计的星形行星分离为$ a _ {\ perp} = 3.92^{+1.10} _ {+1.10} _ { - 1.32}} \ \ rm {au}这意味着地球位于宿主的雪线之外。相对镜头 - 源正确的运动为$μ_ {\ rm rel} \ sim 7 \ \ rm {mas \ yr^{ - 1}} $,因此镜头和源将在10年内彼此分离。然后,可以通过30m级望远镜进行高分辨率成像的30m级望远镜测量宿主恒星的通量,因此可以确定其质量。
We report a giant exoplanet discovery in the microlensing event OGLE-2017-BLG-1049, which is a planet-host star mass ratio of $q=9.53\pm0.39\times10^{-3}$ and has a caustic crossing feature in the Korea Microlensing Telescope Network (KMTNet) observations. The caustic crossing feature yields an angular Einstein radius of $θ_{\rm E}=0.52 \pm 0.11\ {\rm mas}$. However, the microlens parallax is not measured because of the time scale of the event $t_{\rm E}\simeq 29\ {\rm days}$, which is not long enough in this case to determine the microlens parallax. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. From this, we find that the lens system has a star with mass $M_{\rm h}=0.55^{+0.36}_{-0.29} \ M_{\odot}$ hosting a giant planet with $M_{\rm p}=5.53^{+3.62}_{-2.87} \ M_{\rm Jup}$, at a distance of $D_{\rm L}=5.67^{+1.11}_{-1.52}\ {\rm kpc}$. The projected star-planet separation in units of the Einstein radius $(θ_{\rm E})$ corresponding to the total mass of the lens system is $a_{\perp}=3.92^{+1.10}_{-1.32}\ \rm{au}$. This means that the planet is located beyond the snow line of the host. The relative lens-source proper motion is $μ_{\rm rel}\sim 7 \ \rm{mas \ yr^{-1}}$, thus the lens and source will be separated from each other within 10 years. Then the flux of the host star can be measured by a 30m class telescope with high-resolution imaging in the future, and thus its mass can be determined.