论文标题
深度检索的展开算法
Unfolded Algorithms for Deep Phase Retrieval
论文作者
论文摘要
几十年来,探索相检索的想法一直吸引着研究人员,因为它在广泛的应用中出现。相位检索算法的任务通常是从线性相位测量值中恢复信号。在本文中,我们通过提出基于混合模型的数据驱动的深度体系结构(称为展开的相位检索(UPR))来解决问题,该体系结构在改善最先进的数据驱动和基于模型的相位检索算法的性能方面具有巨大的潜力。所提出的方法受益于良好基于模型的算法的多功能性和解释性,同时受益于深层神经网络的表现力。特别是,我们提出的基于模型的深度体系结构应用于常规的相位检索问题(通过渐变的电线流量算法)和稀疏相位检索问题(通过稀疏的截断幅度流量算法),在两种情况下都显示出巨大的承诺。此外,我们考虑了传感矩阵和信号处理算法的联合设计,并在此过程中利用了深层展开技术。我们的数值结果说明了这种基于混合模型和数据驱动的框架的有效性,并展示了数据辅助方法的未开发潜力,以增强现有的阶段检索算法。
Exploring the idea of phase retrieval has been intriguing researchers for decades, due to its appearance in a wide range of applications. The task of a phase retrieval algorithm is typically to recover a signal from linear phaseless measurements. In this paper, we approach the problem by proposing a hybrid model-based data-driven deep architecture, referred to as Unfolded Phase Retrieval (UPR), that exhibits significant potential in improving the performance of state-of-the art data-driven and model-based phase retrieval algorithms. The proposed method benefits from versatility and interpretability of well-established model-based algorithms, while simultaneously benefiting from the expressive power of deep neural networks. In particular, our proposed model-based deep architecture is applied to the conventional phase retrieval problem (via the incremental reshaped Wirtinger flow algorithm) and the sparse phase retrieval problem (via the sparse truncated amplitude flow algorithm), showing immense promise in both cases. Furthermore, we consider a joint design of the sensing matrix and the signal processing algorithm and utilize the deep unfolding technique in the process. Our numerical results illustrate the effectiveness of such hybrid model-based and data-driven frameworks and showcase the untapped potential of data-aided methodologies to enhance the existing phase retrieval algorithms.