论文标题

使用DomainAdversarial神经网络无监督的跨语性语音情感识别

Unsupervised Cross-Lingual Speech Emotion Recognition Using DomainAdversarial Neural Network

论文作者

Cai, Xiong, Wu, Zhiyong, Zhong, Kuo, Su, Bin, Dai, Dongyang, Meng, Helen

论文摘要

通过使用深度学习的方法,语音情感循环涉及单个领域的言论已获得了许多出色的重新选择。但是,跨域SER仍然是源域和目标域之间的分布变化的挑战性任务。在这项工作中,我们建议基于域的对抗性神经网络(DANN)方法来减轻跨语言SER的分布偏移问题。具体而言,我们在功能提取器托法的情况下添加了语言分类器和梯度逆转层。我们的方法是无监督的。例如,不需要labelson目标语言,这使得我们的方法更容易到其他语言。实验结果表明,该方法的平均绝对改善比基线系统的唤醒和阀门属性任务的平均改善为3.91%。此外,我们发现批处理标准对Dann的性能有益。因此,我们还探讨了不同数据组合方法的效果,以批准。

By using deep learning approaches, Speech Emotion Recog-nition (SER) on a single domain has achieved many excellentresults. However, cross-domain SER is still a challenging taskdue to the distribution shift between source and target domains.In this work, we propose a Domain Adversarial Neural Net-work (DANN) based approach to mitigate this distribution shiftproblem for cross-lingual SER. Specifically, we add a languageclassifier and gradient reversal layer after the feature extractor toforce the learned representation both language-independent andemotion-meaningful. Our method is unsupervised, i. e., labelson target language are not required, which makes it easier to ap-ply our method to other languages. Experimental results showthe proposed method provides an average absolute improve-ment of 3.91% over the baseline system for arousal and valenceclassification task. Furthermore, we find that batch normaliza-tion is beneficial to the performance gain of DANN. Thereforewe also explore the effect of different ways of data combinationfor batch normalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源