论文标题
在MMP上排名三倍
On the MMP for rank one foliations on threefolds
论文作者
论文摘要
我们证明了Flips的存在,并且在Q-Factorial投影KLT KLT三倍上,对数典型的叶叶对数的基点无定理。特别是,这证明了在McQuillan之后的更广泛的奇异范围的三倍的排名叶面的最小模型的存在。此外,在数值琐碎的日志规范对第一对的情况下,我们显示出丰富的范围。
We prove existence of flips and the base point free theorem for log canonical foliated pairs of rank one on a Q-factorial projective klt threefold. This, in particular, provides a proof of the existence of a minimal model for a rank one foliation on a threefold for a wider range of singularities, after McQuillan. Moreover, we show abundance in the case of numerically trivial log canonical foliated pairs of rank one.