论文标题
使用量子变异分类器方法应用量子机学习在IBM量子计算机模拟器上的LHC上的高能量物理分析中的应用
Application of Quantum Machine Learning using the Quantum Variational Classifier Method to High Energy Physics Analysis at the LHC on IBM Quantum Computer Simulator and Hardware with 10 qubits
论文作者
论文摘要
LHC实验计划的主要目标之一是发现新物理学。这需要在巨大的背景下识别罕见的信号。使用机器学习算法大大提高了我们实现这一目标的能力。随着量子技术的进展,量子机学习可能成为高能物理学数据分析的强大工具。在这项研究中,使用IBM Gate-Model量子计算系统,我们在最近的两个LHC旗舰物理学分析中采用了量子变异分类器方法:$ t \ bar {t}希格斯玻色子耦合到第二代费米子)。我们已经在IBM量子模拟器和IBM Quantum硬件上获得了10个量子位的早期结果。通过量子模拟器上100个事件的小型训练样本,量子变异分类器方法的性能类似于经典算法,例如SVM(支持向量机)和BDT(增强的决策树),这些算法通常在LHC物理学分析中使用。在量子硬件上,量子变异分类器方法显示出有希望的歧视能力,与量子模拟器上的差异能力相当。这项研究表明,量子机器学习能够在现实的物理数据集中区分信号和背景。我们预见到未来的高光度LHC物理学分析中量子机学习的使用,包括对希格斯玻色子自耦合的测量以及对暗物质的搜索。
One of the major objectives of the experimental programs at the LHC is the discovery of new physics. This requires the identification of rare signals in immense backgrounds. Using machine learning algorithms greatly enhances our ability to achieve this objective. With the progress of quantum technologies, quantum machine learning could become a powerful tool for data analysis in high energy physics. In this study, using IBM gate-model quantum computing systems, we employ the quantum variational classifier method in two recent LHC flagship physics analyses: $t\bar{t}H$ (Higgs boson production in association with a top quark pair) and $H\rightarrowμ^{+}μ^{-}$ (Higgs boson decays to two muons, probing the Higgs boson couplings to second-generation fermions). We have obtained early results with 10 qubits on the IBM quantum simulator and the IBM quantum hardware. With small training samples of 100 events on the quantum simulator, the quantum variational classifier method performs similarly to classical algorithms such as SVM (support vector machine) and BDT (boosted decision tree), which are often employed in LHC physics analyses. On the quantum hardware, the quantum variational classifier method has shown promising discrimination power, comparable to that on the quantum simulator. This study demonstrates that quantum machine learning has the ability to differentiate between signal and background in realistic physics datasets. We foresee the usage of quantum machine learning in future high-luminosity LHC physics analyses, including measurements of the Higgs boson self-couplings and searches for dark matter.