论文标题
蛇形细丝的物理和化学结构 - 快速形成和重力驱动的积聚
Physical and chemical structure of the Serpens filament -- fast formation and gravity-driven accretion
论文作者
论文摘要
据信,蛇形细丝是相对附近的分子云中突出的伸长结构,正处于早期进化阶段,因此研究其物理和化学特性可以阐明细丝形成和早期进化。主要目标是以$ \ sim $ 0.07 PC的空间分辨率和$ \ lyssim $ 0.1〜 km〜s $^s $^{ - 1} $的空间分辨率解决蛇形细丝的动态状态。 We performed $^{13}$CO (1--0), C$^{18}$O (1--0), C$^{17}$O (1--0), $^{13}$CO (2--1), C$^{18}$O (2--1), and C$^{17}$O (2--1) imaging observations toward the Serpens filament with the Institut de放射性摄氏毫米{é} Trique 30-M(IRAM-30 M)和Atacama Pathfinder实验(APEX)望远镜。在本丝中观察到了广泛的狭窄$^{13} $ co(2--1)自我吸收,从而导致$^{13} $ co形态与C $^{18} $ O和C $ o and C $^{17} $ o所追踪的丝状结构不同。我们的激发分析表明,在大多数地区,C $^{18} $ o过渡的不透明性变得高于统一,并且该分析证实了存在广泛的CO消耗。此外,我们表明,局部速度梯度具有垂直于郊区灯丝的长轴,并平行于大规模磁场方向的趋势。局部速度梯度的幅度降低了细丝的顶峰。观察到的速度结构可以是重力驱动的积聚流。 c $^{18} $ o冻结过程的等法进化轨道表明灯丝很年轻,年龄为$ \ sillsim $ 2 Myr。我们建议蛇源细丝是一种新成型的略微危险结构,似乎是从其环境气体中积极积累材料。
The Serpens filament, a prominent elongated structure in a relatively nearby molecular cloud, is believed to be at an early evolutionary stage, so studying its physical and chemical properties can shed light on filament formation and early evolution. The main goal is to address the physical and chemical properties as well as the dynamical state of the Serpens filament at a spatial resolution of $\sim$0.07 pc and a spectral resolution of $\lesssim$0.1~km~s$^{-1}$. We performed $^{13}$CO (1--0), C$^{18}$O (1--0), C$^{17}$O (1--0), $^{13}$CO (2--1), C$^{18}$O (2--1), and C$^{17}$O (2--1) imaging observations toward the Serpens filament with the Institut de Radioastronomie Millim{é}trique 30-m (IRAM-30 m) and Atacama Pathfinder EXperiment (APEX) telescopes. Widespread narrow $^{13}$CO (2--1) self-absorption is observed in this filament, causing the $^{13}$CO morphology to be different from the filamentary structure traced by C$^{18}$O and C$^{17}$O. Our excitation analysis suggests that the opacities of C$^{18}$O transitions become higher than unity in most regions, and this analysis confirms the presence of widespread CO depletion. Further we show that the local velocity gradients have a tendency to be perpendicular to the filament's long axis in the outskirts and parallel to the large-scale magnetic field direction. The magnitudes of the local velocity gradients decrease toward the filament's crest. The observed velocity structure can be a result of gravity-driven accretion flows. The isochronic evolutionary track of the C$^{18}$O freeze-out process indicates the filament is young with an age of $\lesssim$2 Myr. We propose that the Serpens filament is a newly-formed slightly-supercritical structure which appears to be actively accreting material from its ambient gas.