论文标题
Kähler歧管上的线束序列的Bergman内核和等分分配
Bergman kernels and equidistribution for sequences of line bundles on Kähler manifolds
论文作者
论文摘要
给定一系列积极的Hermitian Holomorthic Line捆绑$(L_P,H_P)$在Kähler歧管上$ x $,我们建立了$ l_p $的全球全体形态截面伯格曼核的渐近扩展,在$ c_1 $ c_1(l_p $ c_1的天然融合)下,$ c_1(l_p $)然后,我们将其应用于研究$ l_p $的$ m $ thus $ m $ thus的常见序列的渐近分布,为$ p \ to \ infty $。
Given a sequence of positive Hermitian holomorphic line bundles $(L_p,h_p)$ on a Kähler manifold $X$, we establish the asymptotic expansion of the Bergman kernel of the space of global holomorphic sections of $L_p$, under a natural convergence assumption on the sequence of curvatures $c_1(L_p,h_p)$. We then apply this to study the asymptotic distribution of common zeros of random sequences of $m$-tuples of sections of $L_p$ as $p\to\infty$.