论文标题
优化限制的光谱训练样品,以进行超新星的光度分类
Optimising a magnitude-limited spectroscopic training sample for photometric classification of supernovae
论文作者
论文摘要
为了准备从时空和时间(LSST)的传统调查中进行瞬态的光度分类,我们使用不同的训练数据集进行测试。利用4米多对象光谱望远镜(4个最)时域的望远镜(TIDE)可以对瞬变进行分类的深度,我们模拟了达到$ r _ {\ textrm {ab}}} \ abs tem的幅度限制样品。我们使用软件Snmachine进行模拟,这是一种使用机器学习的光度分类管道。与代表性的培训样本相比,当训练样本被限制时,机器学习算法难以对超新星进行分类。当我们将幅度限制的训练样品与模拟的近红外超级新星的模拟样本相结合时,分类性能会明显改善。 ROC曲线下的平均面积(AUC)的平均面积范围在10次运行中的得分从0.547-0.628增加到0.946-0.969,而分类样品的纯度在4个算法中的2个运行中均达到95%。通过使用增强软件鳄梨创建新的,人造的光曲线,我们在所有的10次运行中为所有机器学习算法执行的所有10次运行中的分类样本中的纯度达到了纯度。通过人工神经网络算法,我们还达到最高平均AUC得分为0.986。具有“真”微弱的超新星来补充我们的幅度限制样品是优化4个光谱样品的关键要求。但是,我们的结果是一个概念证明,即增强也是获得最佳分类结果所必需的。
In preparation for photometric classification of transients from the Legacy Survey of Space and Time (LSST) we run tests with different training data sets. Using estimates of the depth to which the 4-metre Multi-Object Spectroscopic Telescope (4MOST) Time Domain Extragalactic Survey (TiDES) can classify transients, we simulate a magnitude-limited sample reaching $r_{\textrm{AB}} \approx$ 22.5 mag. We run our simulations with the software snmachine, a photometric classification pipeline using machine learning. The machine-learning algorithms struggle to classify supernovae when the training sample is magnitude-limited, in contrast to representative training samples. Classification performance noticeably improves when we combine the magnitude-limited training sample with a simulated realistic sample of faint, high-redshift supernovae observed from larger spectroscopic facilities; the algorithms' range of average area under ROC curve (AUC) scores over 10 runs increases from 0.547-0.628 to 0.946-0.969 and purity of the classified sample reaches 95 per cent in all runs for 2 of the 4 algorithms. By creating new, artificial light curves using the augmentation software avocado, we achieve a purity in our classified sample of 95 per cent in all 10 runs performed for all machine-learning algorithms considered. We also reach a highest average AUC score of 0.986 with the artificial neural network algorithm. Having `true' faint supernovae to complement our magnitude-limited sample is a crucial requirement in optimisation of a 4MOST spectroscopic sample. However, our results are a proof of concept that augmentation is also necessary to achieve the best classification results.